十分钟读完CNN、RNN、VAE、GAN、GNN

卷积神经网络 (Convolutional Neural Networks, CNN)

        应用场景:图像识别、视频分析、自然语言处理等

特点:

       卷积层:使用滤波器(或称为核)对输入数据进行卷积操作,提取局部特征。

       池化层:最大池化或平均池化方法,能降低数据维度,减少计算量,保持重要信息。

       全连接层:通常位于网络的最后几层,用于分类任务。

       激活函数:如ReLU,用于引入非线性。

优势:擅长捕捉空间层次结构,对于图像处理特别有效。

下面是tensorflow和pytorch的模型搭建方式:

##tensorflow框架下搭建方式
model = models.Sequential()

# 第一个卷积层
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))

# 第二个卷积层
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))

# 第三个卷积层
model.add(layers.Conv2D(64, (3, 3), activation='relu'))

# 展平层
model.add(layers.Flatten())

# 全连接层
model.add(layers.Dense(64, activation='relu'))

# 输出层
model.add(layers.Dense(10, activation='softmax'))
##pytorch框架模型搭建
class SimpleCNN(nn.Module):
    def __init__(self):
        super(SimpleCNN, self).__init__()
        
        # 第一个卷积层
        self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=3, padding=1)
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
        
        # 第二个卷积层
        self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, padding=1)
        
        # 全连接层
        self.fc1 = nn.Linear(64 * 7 * 7, 128)
        self.fc2 = nn.Linear(128, 10)
        
    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 64 * 7 * 7)  # 展平
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# 实例化模型
model = SimpleCNN()

循环神经网络 (Recurrent Neural Networks, RNN)

        应用场景:序列预测、文本生成、语音识别等。

特点:

        循环结构:RNN中的每个单元不仅接收当前时刻的输

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Savor-f

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值