卷积神经网络 (Convolutional Neural Networks, CNN)
应用场景:图像识别、视频分析、自然语言处理等
特点:
卷积层:使用滤波器(或称为核)对输入数据进行卷积操作,提取局部特征。
池化层:最大池化或平均池化方法,能降低数据维度,减少计算量,保持重要信息。
全连接层:通常位于网络的最后几层,用于分类任务。
激活函数:如ReLU,用于引入非线性。
优势:擅长捕捉空间层次结构,对于图像处理特别有效。
下面是tensorflow和pytorch的模型搭建方式:
##tensorflow框架下搭建方式 model = models.Sequential() # 第一个卷积层 model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1))) model.add(layers.MaxPooling2D((2, 2))) # 第二个卷积层 model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) # 第三个卷积层 model.add(layers.Conv2D(64, (3, 3), activation='relu')) # 展平层 model.add(layers.Flatten()) # 全连接层 model.add(layers.Dense(64, activation='relu')) # 输出层 model.add(layers.Dense(10, activation='softmax'))
##pytorch框架模型搭建
class SimpleCNN(nn.Module):
def __init__(self):
super(SimpleCNN, self).__init__()
# 第一个卷积层
self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=3, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
# 第二个卷积层
self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, padding=1)
# 全连接层
self.fc1 = nn.Linear(64 * 7 * 7, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 64 * 7 * 7) # 展平
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
# 实例化模型
model = SimpleCNN()
循环神经网络 (Recurrent Neural Networks, RNN)
应用场景:序列预测、文本生成、语音识别等。
特点:
循环结构:RNN中的每个单元不仅接收当前时刻的输