P4168 [Violet] 蒲公英 题解

注意

该文章原文于 2023-11-02 09:04 发表于洛谷,链接与文章内容在此留作保存。

题意

给定一个长度为 n n n 的序列,每个位置有一个颜色。每次询问一个区间中出现次数最多的颜色,如果有多个则取颜色数字最小的。强制在线

题解

首先离散化。然后考虑用数据结构去维护这个序列。

线段树不好维护,考虑分块。

为了快速访问块中某一颜色出现的次数,用 c n t i , j cnt_{i, j} cnti,j 表示前 1 1 1 i i i 块中,颜色 j j j 出现的次数。

然后询问的时候,用 t o t i tot_i toti 表示颜色 i i i 在这段区间出现的次数。对于整块,用 c n t cnt cnt 存进 t o t tot tot即可;对于散块,直接暴力加进来就可以。

答案就在更新 t o t tot tot 的时候一同更新即可。时间复杂度 O ( n n ) \mathcal{O}(n \sqrt{n}) O(nn )

CODE:

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std;

const int maxn = 4e4 + 5;

int n, m, Q, px, mx, lastans;
int a[maxn], b[maxn], blk[maxn], L[205], R[205];
int cnt[205][maxn], tot[maxn];

void add(int x, int val) {
	tot[x] += val;
	if(tot[x] >= tot[mx]) {
		if(tot[x] > tot[mx]) mx = x;
		else if(x < mx) mx = x;
	}
}

void prework() {
	for(int i = 1; i <= blk[n]; i++) {
		for(int j = 1; j <= px; j++)
			cnt[i][j] = cnt[i-1][j];
		for(int j = L[i]; j <= R[i]; j++)
			cnt[i][a[j]]++;
	}
}

int getans(int l, int r) {
	if(blk[l] == blk[r]) {
		for(int i = l; i <= r; i++) tot[a[i]] = 0;
		mx = px+1;
		for(int i = l; i <= r; i++)
			add(a[i], 1);
		return mx;
	}
	for(int i = 1; i <= px; i++) tot[i] = 0;
	mx = px+1;
	int pl = blk[l] + 1, pr = blk[r] - 1;
	if(pl <= pr) for(int i = 1; i <= px; i++) 
		add(i, cnt[pr][i] - cnt[pl-1][i]);
	for(int i = l; i <= R[blk[l]]; i++)
		add(a[i], 1);
	for(int i = L[blk[r]]; i <= r; i++)
		add(a[i], 1);
	return mx;
}

int main() {
	scanf("%d %d", &n, &m);
	Q = sqrt(n);
	for(int i = 1; i <= n; i++) {
		scanf("%d", &a[i]);
		blk[i] = (i-1)/Q + 1;
		if(blk[i]*Q == i) R[blk[i]] = i;
		if(blk[i-1]*Q == i-1) L[blk[i]] = i;
		b[i] = a[i];
	}
	R[blk[n]] = n;
	sort(b+1, b+1+n);
	px = unique(b+1, b+1+n) - b - 1;
	for(int i = 1; i <= n; i++)
		a[i] = lower_bound(b+1, b+1+px, a[i]) - b;
	
	prework();
	for(int i = 1, l, r; i <= m; i++) {
		scanf("%d %d", &l, &r);
		l = (l + lastans - 1) % n + 1;
		r = (r + lastans - 1) % n + 1;
		if(l > r) swap(l, r);
		printf("%d\n", lastans = b[getans(l, r)]);
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值