注意
该文章原文于 2023-11-02 09:04 发表于洛谷,链接与文章内容在此留作保存。
题意
给定一个长度为 n n n 的序列,每个位置有一个颜色。每次询问一个区间中出现次数最多的颜色,如果有多个则取颜色数字最小的。强制在线
题解
首先离散化。然后考虑用数据结构去维护这个序列。
线段树不好维护,考虑分块。
为了快速访问块中某一颜色出现的次数,用 c n t i , j cnt_{i, j} cnti,j 表示前 1 1 1 到 i i i 块中,颜色 j j j 出现的次数。
然后询问的时候,用 t o t i tot_i toti 表示颜色 i i i 在这段区间出现的次数。对于整块,用 c n t cnt cnt 存进 t o t tot tot即可;对于散块,直接暴力加进来就可以。
答案就在更新 t o t tot tot 的时候一同更新即可。时间复杂度 O ( n n ) \mathcal{O}(n \sqrt{n}) O(nn)。
CODE:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std;
const int maxn = 4e4 + 5;
int n, m, Q, px, mx, lastans;
int a[maxn], b[maxn], blk[maxn], L[205], R[205];
int cnt[205][maxn], tot[maxn];
void add(int x, int val) {
tot[x] += val;
if(tot[x] >= tot[mx]) {
if(tot[x] > tot[mx]) mx = x;
else if(x < mx) mx = x;
}
}
void prework() {
for(int i = 1; i <= blk[n]; i++) {
for(int j = 1; j <= px; j++)
cnt[i][j] = cnt[i-1][j];
for(int j = L[i]; j <= R[i]; j++)
cnt[i][a[j]]++;
}
}
int getans(int l, int r) {
if(blk[l] == blk[r]) {
for(int i = l; i <= r; i++) tot[a[i]] = 0;
mx = px+1;
for(int i = l; i <= r; i++)
add(a[i], 1);
return mx;
}
for(int i = 1; i <= px; i++) tot[i] = 0;
mx = px+1;
int pl = blk[l] + 1, pr = blk[r] - 1;
if(pl <= pr) for(int i = 1; i <= px; i++)
add(i, cnt[pr][i] - cnt[pl-1][i]);
for(int i = l; i <= R[blk[l]]; i++)
add(a[i], 1);
for(int i = L[blk[r]]; i <= r; i++)
add(a[i], 1);
return mx;
}
int main() {
scanf("%d %d", &n, &m);
Q = sqrt(n);
for(int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
blk[i] = (i-1)/Q + 1;
if(blk[i]*Q == i) R[blk[i]] = i;
if(blk[i-1]*Q == i-1) L[blk[i]] = i;
b[i] = a[i];
}
R[blk[n]] = n;
sort(b+1, b+1+n);
px = unique(b+1, b+1+n) - b - 1;
for(int i = 1; i <= n; i++)
a[i] = lower_bound(b+1, b+1+px, a[i]) - b;
prework();
for(int i = 1, l, r; i <= m; i++) {
scanf("%d %d", &l, &r);
l = (l + lastans - 1) % n + 1;
r = (r + lastans - 1) % n + 1;
if(l > r) swap(l, r);
printf("%d\n", lastans = b[getans(l, r)]);
}
return 0;
}