激活函数Leaky Relu和Relu的区别

ReLU(Rectified Linear Unit)和Leaky ReLU都是深度学习中常用的激活函数,它们在激活神经网络层时有一些区别:

1.ReLU(修正线性单元)
ReLU 函数对于正数部分直接输出,对于负数部分输出为零。
1.1公式:

1.2优点:
非常简单,计算速度快。
在很多情况下表现得很好。
1.3缺点:
可能存在 "神经元死亡" 问题,即某些神经元在训练过程中可能永远不会被激活,导致权重无法更新。


2.Leaky ReLU(泄漏修正线性单元)
Leaky ReLU 对于负数部分不再输出零,而是输出一个很小的负数,通常用一个小的斜率 α 乘以输入。
2.1公式:


2.2优点:
解决了ReLU的神经元死亡问题,因为负数部分有一个小的梯度。
2.3缺点:
对于 α 的选择比较敏感,需要调参。

选择使用ReLU还是Leaky ReLU通常取决于实际问题和网络的性能。在一些情况下,Leaky ReLU能够更好地处理梯度消失问题,但在其他情况下,ReLU可能表现得更好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值