ReLU(Rectified Linear Unit)和Leaky ReLU都是深度学习中常用的激活函数,它们在激活神经网络层时有一些区别:
1.ReLU(修正线性单元)
ReLU 函数对于正数部分直接输出,对于负数部分输出为零。
1.1公式:
1.2优点:
非常简单,计算速度快。
在很多情况下表现得很好。
1.3缺点:
可能存在 "神经元死亡" 问题,即某些神经元在训练过程中可能永远不会被激活,导致权重无法更新。
2.Leaky ReLU(泄漏修正线性单元)
Leaky ReLU 对于负数部分不再输出零,而是输出一个很小的负数,通常用一个小的斜率 α 乘以输入。
2.1公式:
2.2优点:
解决了ReLU的神经元死亡问题,因为负数部分有一个小的梯度。
2.3缺点:
对于 α 的选择比较敏感,需要调参。
选择使用ReLU还是Leaky ReLU通常取决于实际问题和网络的性能。在一些情况下,Leaky ReLU能够更好地处理梯度消失问题,但在其他情况下,ReLU可能表现得更好。