【数据结构】C语言实现二叉树的相关操作

定义

树(Tree)是 n (n >= 0) 个结点的有限集

若 n == 0,称为空树

若 n > 0,则它满足如下两个条件:

  1. 有且仅有一个特定的称为根(Root)的结点
  2. 其余结点可分为 m(m>=0) 个互不相交的有限集 T1,T2,T3,…Tm,其中每一个集合本身又是一棵树,称为根的子树(SubTree)

在这里插入图片描述

术语

结点:数据元素

结点的度:结点拥有的子树数目

树的度:树内各结点的度的最大值

叶子结点(终端结点):度为0的结点

结点的子树的根称为该结点的孩子,该结点称为孩子的双亲

层次:结点在树结构中的层(一般定义根为1层)

树的深度:树中结点的最大层次

有序树:树中结点的各子树从左至右有次序(最左边为第一个孩子)

无序树:树中结点的各子树无次序

森林:m(m>=0) 棵互不相交的树的集合

二叉树

定义

二叉树是 n(n>=0) 个结点的有限集,它或者是空集(n = 0),或者由一个根结点及两棵互不相交的分别称作这个根的左子树和右子树的二叉树组成

特点

  1. 每个结点最多只有两棵子树
  2. 子树有左右之分,其次序不能颠倒,即使只有一棵子树时,也必须分清左右
  3. 二叉树可以是空集合,根可以有空的左子树或空的右子树

性质

性质1

一个非空二叉树的第 i 层上至多有2i-1个结点(i >= 1)

在这里插入图片描述

性质2

深度为 k 的二叉树至多有2k - 1个结点( k >= 1)
∑ i = 1 k ( 第 i 层上的最大结点数 ) = ∑ i = 1 k 2 i − 1 = 2 0 + 2 1 + . . . . . . + 2 k − 1 = 2 0 − 2 k − 1 × 2 1 − 2 ( 等比公式求和 ) = 1 − 2 k − 1 = 2 k − 1 \begin{align} \sum_{i=1}^k(第i层上的最大结点数)&=\sum_{i=1}^k{2^{i-1}}\\ &=2^0+2^1+......+2^{k-1}\\ &=\frac{2^0-2^{k-1}\times 2}{1-2}(等比公式求和)\\ &=\frac{1-2^k}{-1}\\ &=2^k-1 \end{align} i=1k(i层上的最大结点数)=i=1k2i1=20+21+......+2k1=12202k1×2(等比公式求和)=112k=2k1
性质3

对任何一棵二叉树 T,如果其叶子数为 n0,度为2的结点数为 n2,则 n0 = n2 + 1

设 B 为二叉树的总边数,n 为二叉树的总结点数,n1 为度为1的结点数

在这里插入图片描述

则有:
B = n − 1 = n 2 × 2 + n 1 × 1 n = n 2 + n 1 + n 0 \begin{align} B &= n-1 = n_2\times 2+n_1\times1 \tag{1}\\ n &= n_2+n_1+n_0 \tag{2}\\ \end{align} Bn=n1=n2×2+n1×1=n2+n1+n0(1)(2)
公式(1)(2)联立得:
n 0 = n 2 + 1 n_0 = n_2 + 1 n0=n2+1

特殊二叉树

满二叉树

一棵深度为 k 且有 2k-1 个结点的二叉树称为满二叉树

特点

  1. 每一层上的结点数都是最大结点数
  2. 叶子结点全在最底层
    在这里插入图片描述

编号规则:从根结点开始,自上而下,自左而右

在这里插入图片描述

完全二叉树

深度为 k 且有 n 个结点的二叉树,当且仅当其每一个结点都与深度为 k 的满二叉树中编号为 1~n 的结点一一对应时,称为完全二叉树

在这里插入图片描述

特点:

  1. 叶子只可能分布在层次最大的两层上
  2. 对任一结点,如果其右子树的最大层次为 i,则其左子树的最大层次必为 i 或 i+1

性质

  • 具有 n 个结点的完全二叉树的深度为 ⌊ l o g 2 n ⌋ + 1 \lfloor log_2{n} \rfloor + 1 log2n+1

  • 对于一棵有 n 个结点的完全二叉树,按序编号后,对于任一结点 i(1 <= i <= n),有:

  1. 如果 i = 1,则结点 i 是二叉树的根,如果 i > 1,则其双亲是结点 ⌊ i / 2 ⌋ \lfloor i/2 \rfloor i/2

  2. 如果 2*i > n,则结点 i 为叶子结点,如果 2*i <= n,则其左孩子为 2*i,其右孩子可能有可能没有

  3. 如果 2*i + 1 > n,则结点 i 必无右孩子,如果 2*i + 1 <= n,则其左孩子为 2*i,右孩子为 2*i + 1

满二叉树和完全二叉树的关系:

满二叉树一定是完全二叉树,完全二叉树不一定是满二叉树

存储结构

二叉树的存储结构可以分为顺序存储结构和链式存储结构,其中,链式存储结构又可分为二叉链表和三叉链表

顺序存储结构

用一个数组来存放二叉树上各结点的数据,需要对二叉树上各个结点进行编号,各个结点的编号等同于该二叉树补全为对应的满二叉树后的编号

在这里插入图片描述

特点:

  1. 结点间的关系蕴含在其存储位置中

  2. 浪费空间,适于存满二叉树和完全二叉树

链式存储结构

二叉链表

typedef struct BiNode
{
	int data;
	struct BiNode* lchild, * rchild;
}BiNode, * BiTree;

对于 n 个结点的二叉链表,有 n + 1 个空指针域

因为:n 个结点的二叉链表,有 2n 个指针域,每个指针域指向一个结点,没有指针域指向根结点

所以有 2n - (n+1) = n + 1 个空指针域

(以下代码都是基于二叉链表的结构实现的)

三叉链表

typedef struct TriNode
{
	int data;
	struct BiNode* lchild, * parent, * rchild;
}TriNode, * TriTree;

遍历

定义

顺着某一条搜索路径寻访二叉树中的结点,使每个结点均被访问一次,而且仅被访问一次

目的

得到树中所有结点的一个线性排列

用途

它是树结构插入、删除、修改、查找和排序运算的前提,是二叉树一切运算的基础和核心

遍历方法

在这里插入图片描述

L 表示遍历左子树

D 表示访问根结点

R 表示遍历右子树

则有 DLR、LDR、LRD、DRL、RDL、RLD 六种遍历方案

若规定先左后右的遍历方法

则只有前三种情况

  1. DLR(先序遍历)
  2. LDR(中序遍历)
  3. LRD(后序遍历)

例:

在这里插入图片描述

由遍历序列确定二叉树

已知二叉树的先序序列和中序序列,可以唯一确定一棵二叉树。
已知二叉树的后序序列和中序序列,可以唯一确定一棵二叉树。
已知二叉树的先序序列和后序序列,不能唯一确定一棵二叉树。

方法:根据先/后序遍历确定根,根据中序遍历确定左右

对于整棵树

先序DLR:ABCDEFGHIJ

中序LDR:CDBFEAIHGJ

由先序序列得树的根结点为 A

由中序序列得出,根结点 A 的左子树为 CDBFE,右子树为 IHGJ

对于根结点 A 的左子树

先序:BCDEF

中序:CDBFE

由先序序列得出其根结点为 B

由中序序列得出,根结点 B 的左子树为 CD,

对于根结点 B 的左子树

先序:CD

中序:CD

由先序序列得出,根结点为 C

由中序序列得出,根结点 C 无左子树,右子树为 D

如此反复,即可确定一棵树

该序列的树为

在这里插入图片描述

代码实现(递归)

先序遍历
void Pre_Order_Traverse(BiTree T)
{
	if (T == NULL)
	{
		return;
	}
	else
	{
		printf("%c", T->data);		//这里可以是任何其他操作
		Pre_Order_Traverse(T->lchild);
		Pre_Order_Traverse(T->rchild);
	}
}
中序遍历
void In_Order_Traverse(BiTree T)
{
	if (T == NULL)
	{
		return;
	}
	else
	{
		In_Order_Traverse(T->lchild);
		printf("%c", T->data);
		In_Order_Traverse(T->rchild);
	}
}
后序遍历
void Post_Order_Traverse(BiTree T)
{
	if (T == NULL)
	{
		return;
	}
	else
	{
		Post_Order_Traverse(T->lchild);
		Post_Order_Traverse(T->rchild);
		printf("%c", T->data);
	}
}

代码实现(非递归)

中序遍历非递归算法

思路:

p为指向根结点的指针,设立一个栈 S

当 p 非空时,将 p 指向结点的地址入栈,然后将 p 指向该结点的左子树

当 p 为空时,栈顶元素出栈,显示结点元素,将 p 指向该结点的右子树

重复以上步骤,直到栈空且 p 也为空

void In_Order_Traverse_2(BiTree T)
{
	LinkStack S = NULL;
	BiNode* p = T;
	BiNode q;
	while (p != NULL || isEmpty_LinkStack(S) != 1)
	{
		if (p != NULL)
		{
			S = push(S, p);
			p = p->lchild;
		}
		else
		{
			S = pop(S, &q);
			printf("%c", q.data);
			p = q.rchild;
		}
	}
}
层次遍历

思路:

p为指向根结点的指针,设立一个队列 Q

  1. 将根结点入队

  2. 队不空时循环:

    从队列中出列一个结点,访问它

    若该结点有左孩子,将左孩子入队

    若该结点有右孩子,将右孩子入队

void level_order(BiTree T)
{
	BiNode* p = T;
	LinkQueue Q;
	init_LinkQueue(&Q);
	in(&Q, p);
	while (isEmpty_LinkQueue(&Q) != NULL)
	{
		p = out(&Q);
		printf("%c ", p->data);
		if (p->lchild != NULL)
		{
			in(&Q, p->lchild);
		}
		if (p->rchild != NULL)
		{
			in(&Q, p->rchild);
		}
	}
}

遍历应用

建立二叉树

按照先/中/后序遍历建立二叉树,以 ‘#’ 字符表示空结点

按照先序遍历建立二叉树的代码如下

BiNode* create_BiTree(BiNode* p)
{
	char ch;
	scanf("%c", &ch);
	if (ch == '#')
	{
		p = NULL;
	}
	else
	{
		p = (BiNode*)malloc(sizeof(BiNode));
		if (p == NULL)
		{
			printf("allocation failure!\n");
			exit(0);
		}
		else
		{
			p->data = ch;
			p->lchild = create_BiTree(p->lchild);
			p->rchild = create_BiTree(p->rchild);
		}
	}
	return p;
}

若想改为中/后序遍历建立二叉树,只需要改动如下代码即可

			p->data = ch;
			p->lchild = create_BiTree(p->lchild);
			p->rchild = create_BiTree(p->rchild);

中序:

			p->lchild = create_BiTree(p->lchild);
			p->data = ch;
			p->rchild = create_BiTree(p->rchild);

后序:

			p->lchild = create_BiTree(p->lchild);
			p->rchild = create_BiTree(p->rchild);
			p->data = ch;

复制二叉树

BiTree copy_BiTree(BiTree T, BiTree newT)
{
	if (T == NULL)
	{
		newT = NULL;
	}
	else
	{
		newT = (BiNode*)malloc(sizeof(BiNode));
		if (newT == NULL)
		{
			printf("allocation failure!\n");
			exit(0);
		}
		else
		{
			newT->data = T->data;
			newT->lchild = NULL;
			newT->rchild = NULL;
			newT->lchild = copy_BiTree(T->lchild, newT->lchild);
			newT->rchild = copy_BiTree(T->rchild, newT->rchild);
		}
	}
	return newT;
}

计算二叉树深度

int get_BiTree_Depth(BiTree T)
{
	if (T == NULL)
	{
		return 0;
	}
	else
	{
		int LeftDepth = get_BiTree_Depth(T->lchild);
		int RightDepth = get_BiTree_Depth(T->rchild);
		if (LeftDepth > RightDepth)
		{
			return LeftDepth + 1;
		}
		else
		{
			return RightDepth + 1;
		}
	}
}

计算二叉树结点总数

int count_BiTree_Node(BiTree T)
{
	if (T == NULL)
	{
		return 0;
	}
	else
	{
		int LeftCount = count_BiTree_Node(T->lchild);
		int RightCount = count_BiTree_Node(T->rchild);
		int totalCount = LeftCount + RightCount + 1;
		return totalCount;
	}
}

计算二叉树叶子结点总数

int count_BiTree_LeafNode(BiTree T)
{
	if (T == NULL)
	{
		return 0;
	}
	else
	{
		if (T->lchild == NULL && T->rchild == NULL)
		{
			return 1;
		}
		else
		{
			return count_BiTree_LeafNode(T->lchild) + count_BiTree_LeafNode(T->rchild);
		}
	}
}
  • 32
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
平衡二叉树是一种特殊的二叉搜索树,它的左右子树的高度差不超过1,这样可以保证平衡二叉树的查找、插入和删除操作的时间复杂度都是O(log n)。 平衡二叉树有很多种,其中比较常见的有AVL树、红黑树、B树等。在本文中,我们主要介绍AVL树。 AVL树是一种严格平衡的二叉搜索树,它的每个节点的左右子树高度差不超过1。当节点的高度差超过1时,就需要通过旋转操作来重新平衡。AVL树的特点是:对于一个节点,其左右子树的高度差不超过1,且左右子树都是AVL树。 插入操作 插入操作是AVL树中比较复杂的操作,因为插入一个节点可能导致整个树失去平衡。下面是AVL树的插入操作: 1. 在AVL树中插入一个节点,首先按照二叉搜索树的规则找到插入的位置。 2. 如果插入节点后,其父节点的左右子树高度差不超过1,则不需要进行旋转操作,直接返回。 3. 如果插入节点后,其父节点的左右子树高度差超过1,则需要进行旋转操作。 4. 如果插入节点在父节点的左子树中,并且插入节点的左子树高度大于插入节点的右子树高度,则进行右旋操作;如果插入节点在父节点的右子树中,并且插入节点的右子树高度大于插入节点的左子树高度,则进行左旋操作。 5. 如果插入节点在父节点的左子树中,并且插入节点的左子树高度小于插入节点的右子树高度,则进行左右旋转操作;如果插入节点在父节点的右子树中,并且插入节点的右子树高度小于插入节点的左子树高度,则进行右左旋转操作。 删除操作 删除操作也是AVL树中比较复杂的操作,因为删除一个节点可能导致整个树失去平衡。下面是AVL树的删除操作: 1. 在AVL树中删除一个节点,首先按照二叉搜索树的规则找到要删除的节点。 2. 如果要删除的节点没有子节点,则直接删除即可。 3. 如果要删除的节点只有一个子节点,则将子节点替换成要删除的节点。 4. 如果要删除的节点有两个子节点,则先找到要删除节点的后继节点(即右子树中最小的节点),将后继节点的值赋给要删除的节点,然后将后继节点删除。 5. 删除一个节点可能会导致整个树失去平衡,因此需要进行旋转操作。 6. 如果删除节点后,其父节点的左右子树高度差不超过1,则不需要进行旋转操作,直接返回。 7. 如果删除节点后,其父节点的左右子树高度差超过1,则需要进行旋转操作。 8. 如果删除节点在父节点的左子树中,并且删除节点的左子树高度大于删除节点的右子树高度,则进行右旋操作;如果删除节点在父节点的右子树中,并且删除节点的右子树高度大于删除节点的左子树高度,则进行左旋操作。 9. 如果删除节点在父节点的左子树中,并且删除节点的左子树高度小于删除节点的右子树高度,则进行左右旋转操作;如果删除节点在父节点的右子树中,并且删除节点的右子树高度小于删除节点的左子树高度,则进行右左旋转操作。 总结 AVL树是一种严格平衡的二叉搜索树,它的每个节点的左右子树高度差不超过1。插入和删除操作可能会导致整个树失去平衡,需要通过旋转操作来重新平衡。AVL树比较适合用于读取操作比较频繁的场景,因为它的查找、插入和删除操作的时间复杂度都是O(log n)。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值