Acwing 2.01背包问题

目录

一、题目

二、题目解析

三、解决问题

四、代码实现

五、优化解释


一、题目

有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。

第 i 件物品的体积是 v[i],价值是 w[i]。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。

接下来有 N 行,每行两个整数 v[i], w[i],用空格隔开,分别表示第 i 件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤1000
0<v[i],w[i]≤1000

输入样例

4 5
1 2
2 4
3 4
4 5

输出样例:

8

二、题目解析

1.为什么说是01背包问题?

因为在挑选物品装入书包的过程中,每件物品都有两种选择,要么选要么不选;我们用01来形象的表示物品的选取与不选取。

2.如何理解这道题目?

我们可以先看能明确表示数据规模的关键词,这道题目是我们要从N件物品中选择总体积不超过V的物品,保证总价值最大。那么如果我们能解决它的子问题,即从 i 件物品中选择总体姐不超过 j 的物品且总价值最大的问题,那么我们一定能解决这个问题。

三、解决问题

1.DP图分析

2.那我们如何计算f(i, j)呢(状态转移)? 

我们选择从第 i 个物品下手,考虑第 i 个物品的选择情况。如下图:

(1)如果我们不选第 i 个物品,那么从前 i 个物品中选择且体积不超过 j 方案,相当于从前 i - 1个物品中选择且体积不超过 j 的方案(这句话要重点理解一下,多看几遍)

(2)如果我们选择第 i 个物品,那么从前 i 个物品中选择且体积不超过 j 方案,相当于从前 i - 1个物品中选择且体积不超过 j - v[i] 的方案(因为只考虑前 i - 1 中的情况,所以我们要先把选择的第 i 个物品的体积刨除掉)

经过上面两步,我们就成功实现了状态转移,将f(i, j)转移到了f(i - 1, j)和f(i - 1, j - v[i])的情况

因为我们要求的是最大值,所以在两种情况中取MAX就好了~

3.初始状态

(1)i == 0时,也就是物品为空,那么对应的 f[0, j] = 0;

(2)j == 0时,也就是体积为空,那么对应的 f[i, 0] = 0;

4.注意

(1)观察上面的状态转移图,由f(i - 1, j - v[i])可知隐藏条件应该是背包的容积要大于物品的体积,这样才能装得下,也就是 j >= v[i]。

(2)f(i , j)是一个状态集合,存储的是每一种情况下的最大价值

(3)注意f(i - 1, j - v[i]) + w[i],一定要加上物品的价值w[i],因为f(i, j)里面存储的值是最大价值(分析:f(i - 1, j - v[i]表示的是从前 i - 1中物品中挑选的物品最大价值,因此要想表示f(i, j)的话必须要加上选择的第 i 件物品的价值)

四、代码实现

1.朴素做法

#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;

const int N = 1010;

int n, m;
int v[N], w[N];
int f[N][N];

int main(){
    cin >> n >> m;
    for(int i = 1; i <= n; i ++) scanf("%d %d", &v[i], &w[i]);
    
    for(int i = 1; i <= n; i ++)
        for(int j = 0; j <= m; j ++)//体积可以从0开始
        {
            f[i][j] = f[i - 1][j];
            if(j >= v[i]) f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);
        }
    
    cout << f[n][m] << endl;
    
    return 0;
}

2.滚动数组优化

#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;

const int N = 1010;

int n, m;
int v[N], w[N];
int f[N];//一维是在二维的基础上删掉了行方向

int main()
{
    cin >> n >> m;
    for(int i = 1; i <= n; i ++) scanf("%d%d", &v[i], &w[i]);

    for(int i = 1; i <= n; i ++)
    {
        for(int j = m; j >= v[i]; j --)
        {
            //f[i][j] = f[i - 1][j];等价变形为f[j] = f[j];可以直接删掉
            /*if(j >= v[i]) f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i]] + w[i]);
            等价变形为f[j] = max(f[j], f[j - v[i]]+ w[i],其实与原来的二维等式是不等价的
            因为f[j - v[i]]的值已经被更新过了,不再是原来的旧值,那我们就采取从右到左算*/
            f[j] = max(f[j], f[j - v[i]] + w[i]);
        }
    }

    cout << f[m];

    return 0;
}

五、优化解释

1.为什么可以用滚动数组进行优化?

在计算f(i, j)的过程中,我们发现我们只用到了第 i 行和第 i - 1的数据,顾名思义,我们可以通过持续不断数组滚动来更新第 i 行的数据,即用新的数据覆盖旧的数据,以降低算法的空间复杂度。

2.直接删除一维,看删除前的式子和删除后的式子是否等价?

f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i]] + w[i])删除一维后变成了f[j] = max(f[j], f[j - v[i]] + w[i]),因为f[i][j]是一行一行从前往后计算的,因此f[j - v[i]]一定实在f[j]之前被更新过一遍,而第一个式子中的f[i - 1][j - v[i]是旧值。所以如果遵循从前往后计算的话,这两个式子就不等价了。因此我们的解决办法是:让 j 从大到小开始遍历

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值