题目
88. 合并两个有序数组 - 力扣(Leetcode)https://leetcode.cn/problems/merge-sorted-array/
思路1:直接合并后排序
最直观的方法是先将数组nums2放进数组nums1的尾部,然后直接对整个数组进行排序。
时间复杂度为,排序序列长度为m+n,套用快速排序的时间复杂度即可,平均情况为。
空间复杂度为,排序序列长度为m+n,套用快速排序的空间复杂度即可,平均情况为。
void Swap(int arr[], int low, int high)
{
int temp;
temp = arr[low];
arr[low] = arr[high];
arr[high] = temp;
}
int Partition(int arr[], int low, int high)
{
int base = arr[low];
while (low < high)
{
while (low < high && arr[high] >= base)
{
high--;
}
Swap(arr, low, high);
while (low < high && arr[low] <= base)
{
low++;
}
Swap(arr, low, high);
}
return low;
}
void QuickSort(int arr[], int low, int high)
{
if (low < high)
{
int base = Partition(arr, low, high);
QuickSort(arr, low, base - 1);
QuickSort(arr, base + 1, high);
}
}
void merge(int* nums1, int nums1Size, int m, int* nums2, int nums2Size, int n)
{
int i, j;
for (i = m, j = 0; j < n; j++, i++)
{
nums1[i] = nums2[j];
}
QuickSort(nums1, 0, m + n - 1);
}
思路2:开辟额外的数组
思路1没有利用数组nums1与nums2已经被排序的性质。为了利用这一性质,我们可以使用双指针方法。这一方法将两个数组看作队列,每次从两个数组头部取出比较小的数字放到结果中。
时间复杂度:。指针移动单调递增,最多移动m+n次,因此时间复杂度为。
空间复杂度:。需要建立长度为m+n的中间数组sorted。
void merge(int* nums1, int nums1Size, int m, int* nums2, int nums2Size, int n)
{
int* sorted = (int*)malloc(sizeof(int) * nums1Size);
int p1 = 0;
int p2 = 0;
int cur = 0;
while (p1 < m && p2 < n)
{
if (nums1[p1] > nums2[p2])
{
sorted[cur++] = nums2[p2++];
}
else
{
sorted[cur++] = nums1[p1++];
}
}
if (p1 == m)
{
for (int i = p2; i < n; ++i)
{
sorted[cur++] = nums2[p2++];
}
}
if (p2 == n)
{
for (int i = p1; i < m; ++i)
{
sorted[cur++] = nums1[p1++];
}
}
for (int i = 0; i < nums1Size; ++i)
{
nums1[i] = sorted[i];
}
free(sorted);
sorted = NULL;
}
思路3:从最大数开始逆向存储
思路2中,之所以要创建临时数组sorted,是因为如果直接合并到数组nums1中,nums1中的元素可能会在取出之前被覆盖。那么如何直接避免覆盖nums1中的元素呢?观察可知,nums1的后半部分是空的,可以直接覆盖而不会影响结果。
因此可以指针设置为从后向前遍历,每次取两者之中的较大者放进nums1的最后面。
Note:
严格来说,在此遍历过程中的任意一个时刻,nums1数组中有m−end1−1个元素被放入nums1的后半部,nums2数组中有n−end2−1个元素被放入nums1的后半部。而在指针end1的后面,nums1数组有m+n−end1−1个位置。
由于m+n−end1−1≥m−end1−1+n−end2−1等价于p2≥−1永远成立,因此nums1后面的位置永远足够容纳被插入的元素,不会产生nums1的元素被覆盖的情况。
时间复杂度:。指针移动单调递减,最多移动m+n次,因此时间复杂度为。
空间复杂度:。直接对数组nums1原地修改,不需要额外空间。
void merge(int* nums1, int nums1Size, int m, int* nums2, int nums2Size, int n)
{
int end1 = m - 1;
int end2 = n - 1;
int end = m + n - 1;
while (end1 >= 0 && end2 >= 0)
{
if (nums1[end1] > nums2[end2])
{
nums1[end--] = nums1[end1--];
}
else
{
nums1[end--] = nums2[end2--];
}
}
while (end2 >= 0)
{
nums1[end--] = nums2[end2--];
}
}