干碎ADMM

对偶上升

考虑带等式约束的凸优化问题(1):
min ⁡ f ( x )  s.t.  A x = b \begin{array}{ll} \operatorname{min} & f(x) \\ \text { s.t. } & A x=b \end{array} min s.t. f(x)Ax=b
其中   x ∈ R n \ x \in \mathbf{R}^{n}  xRn   A ∈ R m × n \ A \in \mathbf{R}^{m \times n}  ARm×n   f : R n → R \ f: \mathbf{R}^{n} \rightarrow \mathbf{R}  f:RnR是凸函数。
优化问题(1)的拉格朗日函数:
  L ( x , y ) = f ( x ) + y T ( A x − b ) \ L(x, y)=f(x)+y^{T}(A x-b)  L(x,y)=f(x)+yT(Axb)
上式的对偶函数:
  g ( y ) = inf ⁡ x L ( x , y ) = − f ∗ ( − A T y ) − b T y \ g(y)=\inf _{x} L(x, y)=-f^{*}\left(-A^{T} y\right)-b^{T} y  g(y)=xinfL(x,y)=f(ATy)bTy
其中   y \ y  y是对偶变量(拉格朗日乘子),   f ∗ \ f^*  f   f \ f  f的凸共轭。
对偶问题为:
 max g ( y ) \text { max} \quad g(y)  maxg(y)
其中   y ∈ R m \ y \in \mathbf{R}^{m}  yRm。假设强对偶性成立,那么原问题和对偶问题的最优解相同。我们可以通过解对偶问题的最优解来得到原问题的最优解:
  x ⋆ = argmin ⁡ x L ( x , y ⋆ ) \ x^{\star}=\underset{x}{\operatorname{argmin}} L\left(x, y^{\star}\right)  x=xargminL(x,y)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值