原题链接:第 9 场 小白入门赛 - 蓝桥云课
目录
A.省赛总动员
签到题
print("No.1")
B.盖印章
设用了A印章a次,B印章b次,两个印章总共使用次数为k;一个A印章能覆盖3格,一个B印章能覆盖2格。设总共被覆盖的格数(即原题样例矩阵中'1'的总数)为s,所以可以列一个二元一次方程组。
a+b=k
3a+2b=s
联立求解得:a=s-2*k,b=3*k-s
#include<bits/stdc++.h>
using namespace std;
#define int long long
#define endl '\n'
signed main() {
ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n, m, k; cin >> n >> m >> k;
int s = 0;
for (int i = 1; i <= n; i++) {
string a; cin >> a;
s += count(a.begin(), a.end(), '1');
}
cout << s - 2 * k << " " << 3 * k - s << endl;
return 0;
}
C.字符迁移
一眼差分,差分中需要将下标都从1开始(还有前缀和 的操作下标也最好从1开始)。
将字符串s的每个字符转成数字数组a[ ]进行操作,开个d[ ]数组是差分数组,因为每次[l , r ]这个区间每个数都要加k,所以每次 对区间[ l , r ]打上差分标记——d[l]+=k,d[r+1]-=k
打完标记后对差分数组d[ ]自身进行前缀和(这一步是为了得到原数组进行操作后的结果,也就是 差分数组的前缀和是原数组变化后的结果)
因为字母表26个字母为一个循环,对每个d[i],都有可能大于26,所以我们要对d[i]对26进行取模操作,再加上'a',强制类型转成char。
#include<bits/stdc++.h>
using namespace std;
#define int long long
#define endl '\n'
const int N = 2e5 + 10;
int a[N], d[N];
signed main() {
ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n, q; cin >> n >> q;
string s; cin >> s;
for (int i = 1; i <= n; i++) {
a[i] = s[i - 1] - 'a';
d[i] = a[i] - a[i - 1];
}
while (q--) {
int l, r, k; cin >> l >> r >> k;
k%=26;
d[l] += k;
d[r + 1] -= k;
}
for (int i = 1; i <= n; i++) d[i] += d[i - 1];
for (int i = 1; i <= n; i++) {
cout << char('a' + d[i] % 26);
}
return 0;
}
D.字典树考试
首先要知道&运算:1&1=1,1&0=0,0&1=0,0&0=0。只有两个1相&时才能为1。
位运算的题一般可以按“位”来考虑,看每一位对答案的“贡献”。 任取两个第k位为1的数,就能产生1的贡献。假设有n个第k位为1的数,那么能产生C(n,2)的贡献,也就是 n*(n-1)/2,累加这些贡献即可。
mx存最大的位数,从右到左分离出一个数的每一位,存在a[ ]数组中,并进行累加(也就是while循环中的操作),当遍历完所有数后,a[ ]数组中存的就是每一位中1的个数(也就是在一堆数中有多少个数字相同的那一位是1)。
#include<bits/stdc++.h>
using namespace std;
#define int long long
#define endl '\n'
const int N=2e5+10;
int a[N],mx;
signed main(){
ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
int n; cin>>n;
for(int i=1;i<=n;i++){
int x; cin>>x;
int k=0;
while(x){
a[++k]+=x&1;
x>>=1;
}
mx=max(mx,k);
}
int ans=0;
for(int i=1;i<=mx;i++){
ans+=a[i]*(a[i]-1)/2;
}
cout<<ans<<endl;
return 0;
}