Time Series Forecasting原理与代码实例讲解
文章目录
1.背景介绍
时间序列预测是指使用过去的数据来预测未来值的过程。它在各个领域都有广泛的应用,例如金融、天气预报、能源需求预测等。随着大数据时代的到来,时间序列数据的积累使得时间序列预测变得越来越重要。
1.1 时间序列数据特征
时间序列数据具有以下几个主要特征:
- 时间依赖性:观测值与时间序列中前面的值有关
- 趋势:数据在长时间内呈现出上升或下降的趋势
- 周期性:数据在固定的时间间隔内重复出现某种模式
- 季节性:数据在一年中的某些特定时间段内呈现出周期性波动
1.2 时间序列预测应用场景
时间序列预测在以下领域有着广泛的应用:
- 金融:股票价格、汇率等预测
- 零售:产品销量预测
- 能源:电力负荷、天然气需求预测
- 制造业:需求预测、库存管理
- 天气:温度、降雨量等预测
- 网络流量:带宽需求预测
2.核心概念与联系
时间序列预测涉及以下几个核心概念:
2.1 平稳性(Stationarity)
平稳性是指时间序列的统计属性(如均值、