基于 ReAct 机制的AI Agent:大模型 ReAct —— 思考与工具协同完成复杂任务推理
当前,在各个大厂纷纷卷LLM的情况下,各自都借助自己的LLM推出了自己的AI Agent,比如字节的Coze,百度的千帆等,还有开源的Dify。
你是否想知道其中的原理?是否想过自己如何实现一套AI Agent?
1. 简述AI Agent
人类的认知通常具备一定的自我调节(self-regulation)和策略制定(strategization)的能力,对于解决一个复杂问题时,可以很自然地运用工作记忆(working memory)将任务相关的决策动作(actions)与思考推理(reasoning)相结合。
大语言模型的推理能力(比如COT)和执行能力(比如生成执行计划)之前是独立研究的,而本文[1]提出的ReAct框架则协同考虑大模型的推理和执行能力。推理能力有助于推断、跟踪、更新动作计划,同时也可处理异常。而动作可以和环境或外部