计算:第二部分 计算的数学基础 第 4 章 数学的基础 第二次数学危机

1. 背景介绍

1.1 问题的由来

数学作为人类文明的基石,其发展历程充满了跌宕起伏。从古希腊的几何学到牛顿的微积分,数学不断地突破自身局限,为科学技术的发展提供了强大的理论支撑。然而,数学的发展并非一帆风顺,它也经历过几次重大的危机,这些危机不仅促使数学家们反思自身的基础,也推动了数学的不断进步。

第二次数学危机,发生在 19 世纪的后期,其核心问题是 无穷小 的概念。这个概念在微积分的建立和发展中扮演着至关重要的角色,但它也引发了深刻的哲学和逻辑上的争议。

1.2 研究现状

第二次数学危机引发了数学界对数学基础的深刻反思,导致了 集合论 的诞生和发展。集合论为数学提供了一个新的基础,它将数学对象视为集合的元素,并通过集合之间的关系来定义数学概念。

然而,集合论本身也存在着一些问题,例如 罗素悖论 的出现,它挑战了集合论的逻辑基础。为了解决这些问题,数学家们提出了不同的集合论公理体系,例如 策梅洛-弗兰克尔集合论 (ZF) 和 策梅洛-弗兰克尔集合论加上选择公理 (ZFC)。

1.3 研究意义

第二次数学危机

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智能涌现深度研究

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值