1. 背景介绍
1.1 问题的由来
数学作为人类文明的基石,其发展历程充满了跌宕起伏。从古希腊的几何学到牛顿的微积分,数学不断地突破自身局限,为科学技术的发展提供了强大的理论支撑。然而,数学的发展并非一帆风顺,它也经历过几次重大的危机,这些危机不仅促使数学家们反思自身的基础,也推动了数学的不断进步。
第二次数学危机,发生在 19 世纪的后期,其核心问题是 无穷小 的概念。这个概念在微积分的建立和发展中扮演着至关重要的角色,但它也引发了深刻的哲学和逻辑上的争议。
1.2 研究现状
第二次数学危机引发了数学界对数学基础的深刻反思,导致了 集合论 的诞生和发展。集合论为数学提供了一个新的基础,它将数学对象视为集合的元素,并通过集合之间的关系来定义数学概念。
然而,集合论本身也存在着一些问题,例如 罗素悖论 的出现,它挑战了集合论的逻辑基础。为了解决这些问题,数学家们提出了不同的集合论公理体系,例如 策梅洛-弗兰克尔集合论 (ZF) 和 策梅洛-弗兰克尔集合论加上选择公理 (ZFC)。
1.3 研究意义
第二次数学危机