PS · class 2


前言

自己整理的选修课“Photoshop图像处理”的笔记


一、证件照

效果图展示:
前:在这里插入图片描述
后:在这里插入图片描述

1.使用魔棒工具,点击背景,发现形成选区
2.在选区内部按鼠标右键,“选择反向”
3.“选择并遮住…”在这里插入图片描述
4.根据自己的需要更改视图(此处因原图是白底,所以将视图更改为黑底)在这里插入图片描述
5.对头发周围的选区做出一定调整在这里插入图片描述
6.先按Ctrl+C,再按Ctrl+V,将选区复制到一个新图层
7.创建新图层在这里插入图片描述
8.选择合适的前景色,使用油漆桶工具给新建的图层上色
9.“图像”->“画布大小”在这里插入图片描述
10.使用“矩形选框工具”,框出人物主体在这里插入图片描述
11.“图像”->“图像大小”在这里插入图片描述
12.“图像”->“画布大小”在这里插入图片描述
13.“编辑”->“定义图案”
14.在这里插入图片描述
15.油漆桶工具在这里插入图片描述

二、对于上节课的补充

在“内容识别缩放”中,对于不需要进行缩放的区域,可以先创建一个选区,并将其存储,接着在进行内容识别缩放时对它进行保护在这里插入图片描述

内容概要:本文档详细介绍了一个利用Matlab实现Transformer-Adaboost结合的时间序列预测项目实例。项目涵盖Transformer架构的时间序列特征提取与建模,Adaboost集成方法用于增强预测性能,以及详细的模型设计思路、训练、评估过程和最终的GUI可视化。整个项目强调数据预处理、窗口化操作、模型训练及其优化(包括正则化、早停等手段)、模型融合策略和技术部署,如GPU加速等,并展示了通过多个评估指标衡量预测效果。此外,还提出了未来的改进建议和发展方向,涵盖了多层次集成学习、智能决策支持、自动化超参数调整等多个方面。最后部分阐述了在金融预测、销售数据预测等领域中的广泛应用可能性。 适合人群:具有一定编程经验的研发人员,尤其对时间序列预测感兴趣的研究者和技术从业者。 使用场景及目标:该项目适用于需要进行高质量时间序列预测的企业或机构,比如金融机构、能源供应商和服务商、电子商务公司。目标包括但不限于金融市场的波动性预测、电力负荷预估和库存管理。该系统可以部署到各类平台,如Linux服务器集群或云计算环境,为用户提供实时准确的预测服务,并支持扩展以满足更高频率的数据吞吐量需求。 其他说明:此文档不仅包含了丰富的理论分析,还有大量实用的操作指南,从项目构思到具体的代码片段都有详细记录,使用户能够轻松复制并改进这一时间序列预测方案。文中提供的完整代码和详细的注释有助于加速学习进程,并激发更多创新想法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值