代码随想录刷题|LeetCode 583. 两个字符串的删除操作 72. 编辑距离 编辑距离总结篇

583. 两个字符串的删除操作

题目链接:力扣

思路

        做动态规划就是要一直想着dp数组是什么含义

1、确定dp数组的含义

        dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数

2、确定递推公式

有两种情况:

  • 当word1[i - 1] 与 word2[j - 1]相同的时候
    • dp[i][j] = dp[i - 1][j - 1];
  • 当word1[i - 1] 与 word2[j - 1]不相同的时候
    • 这里面有三种情况:
      • 删word1[i - 1],最少操作次数为dp[i - 1][j] + 1
      • 删word2[j - 1],最少操作次数为dp[i][j - 1] + 1
      • 同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2

3、初始化dp数组

        从递推公式中,可以看出来,dp[i][0] 和 dp[0][j]是一定要初始化的

        dp[i][0]:word2为空字符串,以i-1为结尾的字符串word1要删除多少个元素,才能和word2相同呢,所以dp[i][0] = i

        dp[0][j]:word1为空字符串,以i-1为结尾的字符串word2要删除多少个元素,才能和word1相同呢,所以dp[0][j] = j

4、遍历顺序

        从前向后,从上到下

两个字符串的删除操作

class Solution {
    public int minDistance(String word1, String word2) {

        int word1len = word1.length();
        int word2len = word2.length();

        // 创建dp数组
        int[][] dp = new int[word1len + 1][word2len + 1];

        // 初始化dp数组
        for (int i = 0; i < word1len + 1; i++) {
            dp[i][0] = i;
        }
        for (int j = 0; j < word2len + 1; j++) {
            dp[0][j] = j;
        }

        // 推导dp数组
        for (int i = 1; i < word1len + 1; i++) {
            for (int j = 1; j < word2len + 1; j++) {
                if (word1.charAt(i-1) == word2.charAt(j-1)) {
                    dp[i][j] = dp[i-1][j-1];
                } else {
                    dp[i][j] = Math.min(dp[i-1][j]+1,dp[i][j-1]+1);
                }
            }
        }

        return dp[word1len][word2len];
    }
}

72. 编辑距离

题目链接:力扣

思路

1、确定dp数组的含义

        dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]

2、确定递推公式

if (word1[i - 1] == word2[j - 1])
    不操作
if (word1[i - 1] != word2[j - 1])
    增
    删
    换
if (word1[i - 1] == word2[j - 1]) {
    dp[i][j] = dp[i - 1][j - 1];
}
else {
    dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
}

3、初始化dp数组

dp[i][0] :以下标i-1为结尾的字符串word1,和空字符串word2,最近编辑距离为dp[i][0]。那么dp[i][0]就应该是i

dp[0][j]:以下标j-1为结尾的字符串word2,和空字符串word1,最近编辑距离为dp[0][j]。那么dp[0][j]就应该是j

4、遍历顺序

        从前向后,从上到下

编辑距离

class Solution {
    public int minDistance(String word1, String word2) {
        int m = word1.length();
        int n = word2.length();

        // 创建dp数组
        int[][] dp = new int[m+1][n+1];

        // 初始化dp数组
        for (int i = 1; i <= m; i++) {
            dp[i][0] = i;
        }
        for (int i = 1; i <= n; i++) {
            dp[0][i] = i;
        }

        // 推导dp数组
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                int left = dp[i][j-1] + 1;
                int mid = dp[i-1][j-1];
                int right = dp[i-1][j] + 1;
                if (word1.charAt(i-1) != word2.charAt(j-1)) {
                    mid++;
                }
                dp[i][j] = Math.min(left,Math.min(mid,right));
            }
        }

        return dp[m][n];
    }

}

编辑距离总结篇

什么是编辑距离

  • 编辑距离,又称Levenshtein距离(莱文斯坦距离也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数,如果它们的距离越大,说明它们越是不同。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符
  • 可以用来做DNA分析,拼字检测,抄袭识别等等。总是比较相似的,或多或少我们可以考虑编辑距离
  • 重点:编辑操作只有三种。插入,删除,替换这三种操作

如何找到最小的编辑距离

  • 可以看作是一种操作路径的搜索,从一个字符串转变为另一个字符串的最短搜索路径。
  • 从一个字符串转到另一个字符串的可能路径是非常多的,所有不同的操作路径,最终都会到达一种状态
  • 采用动态规划的方法,每一种状态都记录下来最短的路径,然后得到最终的结果
  • 编辑距离是用动规来解决的经典题目,题目看上去好像很复杂,但用动规可以很巧妙的算出最少编辑距离。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值