如标题所示,在微调 distil-whisper 时,因为共享内存的张量(tensors)导致了报错,查了一圈没有能直接解决问题的方法,最后通过修改transformers 库的 trainer.py 中的源码解决了问题。
报错原因:
报错发生在 trainer 保存 checkpoint 的时候,从源码来看,trainer 在保存 checkpoint 的时候会经过一系列的判断,然后选择合适的方法来保存。
具体通过下面的逻辑来选择:
supported_classes = (PreTrainedModel,) if not is_peft_available() else (PreTrainedModel, PeftModel)
报错的代码,在执行完这行代码后的到的 supported_classes 为 (PreTrainedModel,) ,这时保存checkpoint的逻辑又要经过多次判断才能保存,所以就出错了。
解决方法:
直接简单粗暴的把 supported_classes 的结果改为 (PreTrainedModel, PeftModel),这样接下来就直接调用 ‘.save_pretrained’ 来保存checkpoint,问题得到解决。
总结:
这种方法仅是为了解决问题而提出的,感觉走的是歪路,但是经过验证保存的 checkpoint 是正常可用的。此外,这种方法不一定能适用各种场景。