Some tensors share memory, this will lead to duplicate memory on disk

如标题所示,在微调 distil-whisper 时,因为共享内存的张量(tensors)导致了报错,查了一圈没有能直接解决问题的方法,最后通过修改transformers 库的 trainer.py 中的源码解决了问题。

报错原因:
报错发生在 trainer 保存 checkpoint 的时候,从源码来看,trainer 在保存 checkpoint 的时候会经过一系列的判断,然后选择合适的方法来保存。
具体通过下面的逻辑来选择:

supported_classes = (PreTrainedModel,) if not is_peft_available() else (PreTrainedModel, PeftModel)

报错的代码,在执行完这行代码后的到的 supported_classes 为 (PreTrainedModel,) ,这时保存checkpoint的逻辑又要经过多次判断才能保存,所以就出错了。

解决方法:
直接简单粗暴的把 supported_classes 的结果改为 (PreTrainedModel, PeftModel),这样接下来就直接调用 ‘.save_pretrained’ 来保存checkpoint,问题得到解决。

总结:
这种方法仅是为了解决问题而提出的,感觉走的是歪路,但是经过验证保存的 checkpoint 是正常可用的。此外,这种方法不一定能适用各种场景。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值