852. spfa判断负环

给定一个 nn 个点 mm 条边的有向图,图中可能存在重边和自环, 边权可能为负数

请你判断图中是否存在负权回路。

输入格式

第一行包含整数 nn 和 mm。

接下来 mm 行每行包含三个整数 x,y,zx,y,z,表示存在一条从点 xx 到点 yy 的有向边,边长为 zz。

输出格式

如果图中存在负权回路,则输出 Yes,否则输出 No

数据范围

1≤n≤20001≤n≤2000,
1≤m≤100001≤m≤10000,
图中涉及边长绝对值均不超过 1000010000。

输入样例:

3 3
1 2 -1
2 3 4
3 1 -4

输出样例:

Yes

#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int N = 2010,M=10010;
int h[N],e[M],ne[M],w[M],idx;
int dist[N],cnt[N];
bool st[N];
int n,m;
void add(int a,int b,int c)
{
    e[idx]=b;w[idx]=c;ne[idx]=h[a];h[a]=idx++;
}
bool spfa()
{
    queue<int>q;
    for(int i=1;i<=n;i++)
    {
        st[i]=true;
        q.push(i);
    }
    while(q.size())
    {
        int t=q.front();
        q.pop();
        st[t]=false;
        for(int i=h[t];i!=-1;i=ne[i])
        {
            int j=e[i];
            if(dist[j]>dist[t]+w[i])
            {
                dist[j]=dist[t]+w[i];
                cnt[j]=cnt[t]+1;
                if(cnt[j]>=n)return  true;
                if(!st[j])
                {
                    st[j]=true;
                    q.push(j);
                }
            }
        }
    }
    return false;
}
int main()
{
    cin>>n>>m;
    memset(h, -1, sizeof h);
    while (m -- ){
        int a,b,c;
        cin>>a>>b>>c;
        add(a,b,c);
    }
    if(spfa())puts("Yes");
    else puts("No");
    return 0;
}
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值