4509. 归一化处理

在机器学习中,对数据进行归一化处理是一种常用的技术。

将数据从各种各样分布调整为平均值为 00、方差为 11 的标准分布,在很多情况下都可以有效地加速模型的训练。

这里假定需要处理的数据为 nn 个整数 a1,a2,⋯,ana1,a2,⋯,an。

这组数据的平均值:

a¯=a1+a2+⋯+anna¯=a1+a2+⋯+ann

方差:

D(a)=1n∑i=1n(ai−a¯)2D(a)=1n∑i=1n(ai−a¯)2

使用如下函数处理所有数据,得到的 nn 个浮点数 f(a1),f(a2),⋯,f(an)f(a1),f(a2),⋯,f(an) 即满足平均值为 00 且方差为 11:

f(ai)=ai−a¯D(a)−−−−√f(ai)=ai−a¯D(a)

输入格式

第一行包含一个整数 nn,表示待处理的整数个数。

第二行包含空格分隔的 nn 个整数,依次表示 a1,a2,⋯,ana1,a2,⋯,an。

输出格式

输出共 nn 行,每行一个浮点数,依次表示按上述方法归一化处理后的数据 f(a1),f(a2),⋯,f(an)f(a1),f(a2),⋯,f(an)。

如果你输出的每个浮点数与参考结果相比,均满足绝对误差不大于 10−410−4,则该测试点满分,否则不得分。

数据范围

全部的测试数据保证 n,|ai|≤1000n,|ai|≤1000,其中 |ai||ai| 表示 aiai 的绝对值。
且输入的 nn 个整数 a1,a2,⋯,ana1,a2,⋯,an 满足:方差 D(a)≥1D(a)≥1。

输入样例:

7
-4 293 0 -22 12 654 1000

输出样例:

-0.7485510379073613
0.04504284674812264
-0.7378629047806881
-0.7966476369773906
-0.7057985054006686
1.0096468614303775
1.9341703768876082

样例解释

平均值:a¯≈276.14285714285717a¯≈276.14285714285717
方差:D(a)≈140060.69387755104D(a)≈140060.69387755104
标准差:D(a)−−−−√≈374.24683549437134

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;

const int N = 1010;
int w[N];
int n;
int main()
{
    cin>>n;
    int sum=0;
    for(int i=0;i<n;i++){
        cin>>w[i];
        sum+=w[i];
    }
    double avg=(double)sum/n;
    double d=0;
    
    for(int i=0;i<n;i++){
        d+=pow(w[i]-avg,2)/n;
    }
    d=sqrt(d);
    for(int i=0;i<n;i++)
    {
        double res=0;
        res=(w[i]-avg)/d;
        cout<<res<<endl;
    }
    
    
    return 0;
}

 

可以使用Matlab的`xlsread`和`xlswrite`函数读取和写入Excel文件,对数据进行处理后再将处理结果写入Excel文件。 下面是一个示例代码,用于将Excel中的数据进行标准化处理归一化处理、缺失值处理和异常值处理,并将处理结果写入Excel文件。 ```matlab % 读取Excel文件中的数据 data = xlsread('data.xlsx'); % 标准化处理 data_std = (data - mean(data)) ./ std(data); % 归一化处理 data_norm = (data - min(data)) ./ (max(data) - min(data)); % 缺失值处理(用均值填充) data_mean = mean(data); data_fill = data; for i = 1:size(data, 2) idx = isnan(data(:,i)); data_fill(idx,i) = data_mean(i); end % 异常值处理(用中位数替换) data_med = median(data); data_replace = data; for i = 1:size(data, 2) q1 = quantile(data(:,i), 0.25); q3 = quantile(data(:,i), 0.75); iqr = q3 - q1; upper = q3 + 1.5 * iqr; lower = q1 - 1.5 * iqr; idx = (data(:,i) > upper) | (data(:,i) < lower); data_replace(idx,i) = data_med(i); end % 将处理结果写入Excel文件 xlswrite('data_processed.xlsx', data_std, 'Standardized'); xlswrite('data_processed.xlsx', data_norm, 'Normalized'); xlswrite('data_processed.xlsx', data_fill, 'Filled'); xlswrite('data_processed.xlsx', data_replace, 'Replaced'); ``` 在这个示例代码中,我们首先使用`xlsread`函数读取Excel文件中的数据。然后,使用Matlab的矩阵运算对数据进行标准化处理归一化处理。接下来,我们使用循环和`isnan`函数找到缺失值,并用均值填充缺失值。最后,我们使用循环和四分位数(Q1和Q3)找到异常值,并用中位数替换异常值。最后,我们使用`xlswrite`函数将处理结果写入Excel文件中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值