在机器学习中,对数据进行归一化处理是一种常用的技术。
将数据从各种各样分布调整为平均值为 00、方差为 11 的标准分布,在很多情况下都可以有效地加速模型的训练。
这里假定需要处理的数据为 nn 个整数 a1,a2,⋯,ana1,a2,⋯,an。
这组数据的平均值:
a¯=a1+a2+⋯+anna¯=a1+a2+⋯+ann
方差:
D(a)=1n∑i=1n(ai−a¯)2D(a)=1n∑i=1n(ai−a¯)2
使用如下函数处理所有数据,得到的 nn 个浮点数 f(a1),f(a2),⋯,f(an)f(a1),f(a2),⋯,f(an) 即满足平均值为 00 且方差为 11:
f(ai)=ai−a¯D(a)−−−−√f(ai)=ai−a¯D(a)
输入格式
第一行包含一个整数 nn,表示待处理的整数个数。
第二行包含空格分隔的 nn 个整数,依次表示 a1,a2,⋯,ana1,a2,⋯,an。
输出格式
输出共 nn 行,每行一个浮点数,依次表示按上述方法归一化处理后的数据 f(a1),f(a2),⋯,f(an)f(a1),f(a2),⋯,f(an)。
如果你输出的每个浮点数与参考结果相比,均满足绝对误差不大于 10−410−4,则该测试点满分,否则不得分。
数据范围
全部的测试数据保证 n,|ai|≤1000n,|ai|≤1000,其中 |ai||ai| 表示 aiai 的绝对值。
且输入的 nn 个整数 a1,a2,⋯,ana1,a2,⋯,an 满足:方差 D(a)≥1D(a)≥1。
输入样例:
7
-4 293 0 -22 12 654 1000
输出样例:
-0.7485510379073613
0.04504284674812264
-0.7378629047806881
-0.7966476369773906
-0.7057985054006686
1.0096468614303775
1.9341703768876082
样例解释
平均值:a¯≈276.14285714285717a¯≈276.14285714285717
方差:D(a)≈140060.69387755104D(a)≈140060.69387755104
标准差:D(a)−−−−√≈374.24683549437134
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int N = 1010;
int w[N];
int n;
int main()
{
cin>>n;
int sum=0;
for(int i=0;i<n;i++){
cin>>w[i];
sum+=w[i];
}
double avg=(double)sum/n;
double d=0;
for(int i=0;i<n;i++){
d+=pow(w[i]-avg,2)/n;
}
d=sqrt(d);
for(int i=0;i<n;i++)
{
double res=0;
res=(w[i]-avg)/d;
cout<<res<<endl;
}
return 0;
}