思路
本题用到了并查集的思想,可参考这篇笔记:
http://t.csdnimg.cn/5EsSChttp://t.csdnimg.cn/5EsSC
针对本题:
只要有关系,就属于同一个集合,就加入到集合中去(不管是同类or异类)
所以边带权的并查集问题本质上只在维护一个大的集合(其他的都是单个点逐一加到大集合里)
精髓:只要两个元素在同一个集合里,就能通过他们与根节点的距离知道他们之间的关系。(我们不需要知道每个点之间的关系,这需要n方时间复杂度,只需要知道每个点和根节点之间的关系即可)
距离的定义
用“距离”来描述关系、判断关系,所有的距离都以根节点为基准,按照mod类别数(3)分为3类。
“距离”:x吃y表示y到x的距离为1. y是第0代,吃y的x是第1代,吃x的是第2代…根节点是第0代
三种关系:用点到根节点之间的距离表示其余根节点之间的关系
mod 3 = 1:可以吃根节点
mod 3 = 2:可以被根节点吃
mod 3 = 0:和根节点同类
把集合中所有的点划分为上述三类。
merge操作的解释:
如果x y的关系是同类且需要merge:
同类意味着d[x]+d[px]-d[y])%3 == 0,故有d[px] = d[y] - d[x];
如果x y的关系是x吃y且需要merge:
x吃y意味着d[x]-d[y]-1)%3 == 0,故有d[px] = d[y] + 1 - d[x];
#include <iostream>
using namespace std;
const int N = 50010;
int n, m;
int p[N], d[N];// p[x]存储x的父节点,d[x]初始存储x到父节点的距离,每调用find函数时,d[x]被更新成x到根节点的距离。
int find(int x)// find函数返回x的祖宗节点
{
if (p[x] != x)
{
int t = find(p[x]); // t暂存x的父亲的祖宗节点
d[x] += d[p[x]];// 将d[x](本来表示x到父节点的距离),更新成x到祖宗节点的距离。
// 因为这句int t = find(p[x]);会不停地递归调用find,直到最后p[x] == x,return x(根节点编号)
// 然后层层调用上一次递归的结果,在这个过程中,d[p[p[p[...p[x]]]]]会不停更新,也就是+1+1...
// 最后到最外面这层调用,d[x] += d[p[x]];的时候,d[p[x]]已经等于p[x]到根节点的距离了。
// 所以这句表示:x到祖宗节点的距离 == d[x] + d[p[x]],也就是x到父节点的距离+父节点到祖宗节点的距离
p[x] = t;// 将x的父亲更新成x的祖宗---路径压缩
}
return p[x];
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i ++ ) p[i] = i;//初始化父节点,刚开始都是孤立节点,自己就是自己的父亲,自己就是一个集合
int res = 0;
while (m -- )
{
int t, x, y;
scanf("%d%d%d", &t, &x, &y);
if (x > n || y > n) res ++ ; //当前的话中X或Y比N大,是假话
else
{
int px = find(x), py = find(y);
if (t == 1)
{
if (px == py && (d[x] - d[y]) % 3) res ++ ;// px == py在一棵树上;(d[x] - d[y]) % 3 != 0与xy同类矛盾
else if (px != py)
{
p[px] = py;
d[px] = d[y] - d[x];//画图理解
}
}
else
{
if (px == py && (d[x] - d[y] - 1) % 3) res ++ ;
else if (px != py)
{
p[px] = py;
// (d[x] - d[y] - 1) % 3 == 0
// d[x] + d[px] - 1 = d[y] 则:
d[px] = d[y] + 1 - d[x];//画图理解
}
}
}
}
printf("%d\n", res);
return 0;
}