思路
该题是并查集的应用,乍看像图论,其实是并查集。
并查集相关参考上一题:
http://t.csdnimg.cn/xDMjThttp://t.csdnimg.cn/xDMjT
每一个连通块其实都是一个集合。
1. 对于连边操作,其实就是集合间的合并。(把a连到b的祖宗节点下面,反之同理)
2. 对于查询是否在同一连通块,就是集合的询问操作。(看是否是一个祖宗节点)
3. 对于查询连通块中点的数量,就是查询集合的大小。(通过查询祖宗节点的size来查询集合大小)
因此,我们这题直接用并查集模板就可以完成了。额外用size数组维护每个连通块中点的数量。
初始化size数组,开始的时候每个连通块就是这个点自身,所以是1
siz[i]=1;
连边操作,其实就是集合间的合并
if(op=="C"){
cin>>a>>b;
if(find(a)==find(b)) continue;//额外注意,a和b在同一个连通块中的时候,不要重复加,不然相当于一棵树点的数量变成了两倍
siz[find(b)]+=siz[find(a)];//注意先加再合并
p[find(a)]=find(b);
}
完整代码:
#include<iostream>
using namespace std;
const int N=100010;
int siz[N],p[N];
int find(int x){
if(p[x]!=x) p[x]=find(p[x]);
return p[x];
}
int main(){
int n,m,a,b;
cin>>n>>m;
for(int i=1;i<=n;i++) {
p[i]=i;
siz[i]=1;
}
while(m--){
string op;
cin>>op;
if(op=="C"){
cin>>a>>b;
if(find(a)==find(b)) continue;
siz[find(b)]+=siz[find(a)];
p[find(a)]=find(b);
}
else if(op=="Q1"){
cin>>a>>b;
if(find(a)==find(b)) cout<<"Yes"<<endl;
else cout<<"No"<<endl;
}
else{
cin>>a;
cout<<siz[find(a)]<<endl;
}
}
}