837.连通块中点的数量 做题笔记

思路

该题是并查集的应用,乍看像图论,其实是并查集。

并查集相关参考上一题:

http://t.csdnimg.cn/xDMjTicon-default.png?t=N7T8http://t.csdnimg.cn/xDMjT
每一个连通块其实都是一个集合。
1. 对于连边操作,其实就是集合间的合并。(把a连到b的祖宗节点下面,反之同理)
2. 对于查询是否在同一连通块,就是集合的询问操作。(看是否是一个祖宗节点)
3. 对于查询连通块中点的数量,就是查询集合的大小。(通过查询祖宗节点的size来查询集合大小)

因此,我们这题直接用并查集模板就可以完成了。额外用size数组维护每个连通块中点的数量。

 初始化size数组,开始的时候每个连通块就是这个点自身,所以是1

siz[i]=1;

连边操作,其实就是集合间的合并

if(op=="C"){
            cin>>a>>b;
            if(find(a)==find(b)) continue;//额外注意,a和b在同一个连通块中的时候,不要重复加,不然相当于一棵树点的数量变成了两倍
            siz[find(b)]+=siz[find(a)];//注意先加再合并
            p[find(a)]=find(b);
        }

完整代码:

#include<iostream>
using namespace std;
const int N=100010;
int siz[N],p[N];

int find(int x){
    if(p[x]!=x) p[x]=find(p[x]);
    return p[x];
}
int main(){
    int n,m,a,b;
    cin>>n>>m;
    for(int i=1;i<=n;i++) {
        p[i]=i;
        siz[i]=1;
    }
    while(m--){
        string op;
        cin>>op;
        if(op=="C"){
            cin>>a>>b;
            if(find(a)==find(b)) continue;
            siz[find(b)]+=siz[find(a)];
            p[find(a)]=find(b);
            
        }
        else if(op=="Q1"){
            cin>>a>>b;
            if(find(a)==find(b)) cout<<"Yes"<<endl;
            else cout<<"No"<<endl;
        }
        else{
            cin>>a;
            cout<<siz[find(a)]<<endl;
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值