一只青蛙一次可以最多跳2级台阶,求青蛙跳上n级台阶有多种跳法?
当 n=1时,青蛙只有一种跳法;
当n=2时,青蛙有两种跳法;
当n=3时,有三种跳法,我们可以先跳一级再跳1级;先跳1级,再跳1级;一级一级的跳;共三种跳法;
当n=4时,我们可以先跳一级台阶,再跳3级台阶;还有一种跳法是先跳2级台阶,再跳2级台阶;因为跳三级台阶有三种跳法,所以2+3=5;
当n=5时,我们可以先跳1级台阶,再跳4级台阶;先跳2级台阶,再跳3级台阶;总跳法为3级台阶+4级台阶的跳法;
当n=m的时候,总跳法为(n-1)级台阶的跳法+(n-2)级台阶的跳法;
得到公式:f(n)=f(n-1)+f(n-2)
代码实现:
int Jump(int n)
{
if (n == 1)
{
return 1;
}
else if (n == 2)
{
return 2;
}
else
{
return Jump(n - 1) + Jump(n - 2);
}
}
int main()
{
int get = 0;
scanf("%d", &get);
int method=Jump(get);
printf("%d", method);
return 0;
}
进阶:一只青蛙一次可以最多跳m级台阶,求青蛙跳上n级台阶有多种跳法?
由第一个问题其实我们已经知道了这种问题的规律
假设m=3,那么当n>3时,f(n)=f(n-1)+f(n-2)+f(n-3);
假设m=h,那么当m>h时,f(n)=f(n-1)+f(n-2)+f(n-3)+。。。+f(n-h);
假设m=5,n=10;那么我们就要求台阶1到5的不同跳法,当n=3时,青蛙最多可以跳3级,当n=4时,青蛙做多可以跳4级台阶,那么对于求这些有个规律,n^2-1; 那么我们就可以更简便的求结果了;
代码实现:
int add(int n, int m)
{
int num = 0;
for (int i = 1; i <= m; i++)
{
if (n == i)
{
return pow(2, i- 1);
}
}
for (int i = 1; i <= m; i++)
{
num += add(n - i, m);
}
return num;
}
int main()
{
int n = 0;
int m = 0;
scanf("%d %d", &n, &m);
printf("%d", add(n, m));
return 0;
}
代码优化:
上述解法是用递归的问题解决的,但是,使用递归的办法来解决效率不高,因为会有重复计算的问题,
因此我们可以用加法+迭代的方式进行计算,但是原理和上述解法一样
代码实现:
int main()
{
int get[101] = { 0 };
int a = 0;
int b = 0;
scanf("%d %d", &a, &b);
for (int i = 1; i <= b; i++)
{
*(get+i)=pow(2,i - 1);
}
for (int i = b+1; i <= a; i++)
{
for (int n = i-b; n <i; n++)
{
get[i] += get[n];
}
}
printf("%d", get[a]);
return 0;
}