青蛙跳台阶问题(和进阶)

一只青蛙一次可以最多跳2级台阶,求青蛙跳上n级台阶有多种跳法?

当 n=1时,青蛙只有一种跳法;

当n=2时,青蛙有两种跳法;

当n=3时,有三种跳法,我们可以先跳一级再跳1级;先跳1级,再跳1级;一级一级的跳;共三种跳法;

当n=4时,我们可以先跳一级台阶,再跳3级台阶;还有一种跳法是先跳2级台阶,再跳2级台阶;因为跳三级台阶有三种跳法,所以2+3=5;

当n=5时,我们可以先跳1级台阶,再跳4级台阶;先跳2级台阶,再跳3级台阶;总跳法为3级台阶+4级台阶的跳法;

当n=m的时候,总跳法为(n-1)级台阶的跳法+(n-2)级台阶的跳法;

得到公式:f(n)=f(n-1)+f(n-2)

代码实现:

int Jump(int n)
{
	if (n == 1)
	{
		return 1;
	}
	else if (n == 2)
	{
		return 2;
	}
	else
	{
		return Jump(n - 1) + Jump(n - 2);
	}
}
int main()
{
	int get = 0;
	scanf("%d", &get);
	int method=Jump(get);
	printf("%d", method);
	return 0;
}

进阶:一只青蛙一次可以最多跳m级台阶,求青蛙跳上n级台阶有多种跳法?

由第一个问题其实我们已经知道了这种问题的规律

假设m=3,那么当n>3时,f(n)=f(n-1)+f(n-2)+f(n-3);

假设m=h,那么当m>h时,f(n)=f(n-1)+f(n-2)+f(n-3)+。。。+f(n-h);

假设m=5,n=10;那么我们就要求台阶1到5的不同跳法,当n=3时,青蛙最多可以跳3级,当n=4时,青蛙做多可以跳4级台阶,那么对于求这些有个规律,n^2-1;   那么我们就可以更简便的求结果了;

代码实现:

int add(int n, int m)
{
	int num = 0;
	for (int i = 1; i <= m; i++)
	{
		if (n == i)
		{ 
			return pow(2, i- 1);
		}
			
	}
	for (int i = 1; i <= m; i++)
	{
		num += add(n - i, m);
	}
	return num;
}
int main()
{
	int n = 0;
	int m = 0;
	scanf("%d %d", &n, &m);
	printf("%d", add(n, m));
	return 0;
}

代码优化:

上述解法是用递归的问题解决的,但是,使用递归的办法来解决效率不高,因为会有重复计算的问题,


 

因此我们可以用加法+迭代的方式进行计算,但是原理和上述解法一样

代码实现:

int main()
{
	int get[101] = { 0 };
	int a = 0;
	int b = 0;
	
	scanf("%d %d", &a, &b);
	for (int i = 1; i <= b; i++)
	{
			*(get+i)=pow(2,i - 1);	
	}

	for (int i = b+1; i <= a; i++)
	{
		for (int n = i-b; n <i; n++)
		{
			get[i] += get[n];
		}
	}
	printf("%d", get[a]);
	return 0;
}

 

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值