51-Nod 1344 走格子

"该问题探讨了一个机器人从1到n个格子行走的过程,每个格子带有能量值。机器人需要足够的初始能量来克服负值格子的能量消耗。通过动态规划,我们可以找到最小的初始能量需求,使得机器人能够完成整个旅程。例如,对于序列{1, -2, -1, 3, 4}
摘要由CSDN通过智能技术生成

有编号1-n的n个格子,机器人从1号格子顺序向后走,一直走到n号格子,并需要从n号格子走出去。机器人有一个初始能量,每个格子对应一个整数A[i],表示这个格子的能量值。如果A[i] > 0,机器人走到这个格子能够获取A[i]个能量,如果A[i] < 0,走到这个格子需要消耗相应的能量,如果机器人的能量 < 0,就无法继续前进了。问机器人最少需要有多少初始能量,才能完成整个旅程。

例如:n = 5。{1,-2,-1,3,4} 最少需要2个初始能量,才能从1号走到5号格子。途中的能量变化如下3 1 0 3 7。

思路:发现为负时会消耗能量,我们把最初能量设为0,看他能走到多远,走到最远时能量为负,那么我们记录一下这个负能量,如果有这个负能量相反的正能量我们这步就刚好可以走。继续遍历就可以。

过程为

 1  -1 -2 1 5

我们可以看到为负是绝对值最大为2

数据很大记得开long long

#include<iostream>
#include<cmath>
#define ll long long
using namespace std;
int n,max1,op;
const int N=50010;
ll a[N],sum,res; 
int main()
{
	cin>>n;
	for(int i=1;i<=n;i++)
	 {
	 	cin>>a[i];
	 }
	for(int i=1;i<=n;i++)
	 {
	    sum+=a[i];
	    if(sum<0)
	    {
	    	res+=abs(sum);
	    	sum=0;
		}
	 }
	 cout<<res;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值