有编号1-n的n个格子,机器人从1号格子顺序向后走,一直走到n号格子,并需要从n号格子走出去。机器人有一个初始能量,每个格子对应一个整数A[i],表示这个格子的能量值。如果A[i] > 0,机器人走到这个格子能够获取A[i]个能量,如果A[i] < 0,走到这个格子需要消耗相应的能量,如果机器人的能量 < 0,就无法继续前进了。问机器人最少需要有多少初始能量,才能完成整个旅程。
例如:n = 5。{1,-2,-1,3,4} 最少需要2个初始能量,才能从1号走到5号格子。途中的能量变化如下3 1 0 3 7。
思路:发现为负时会消耗能量,我们把最初能量设为0,看他能走到多远,走到最远时能量为负,那么我们记录一下这个负能量,如果有这个负能量相反的正能量我们这步就刚好可以走。继续遍历就可以。
过程为
1 -1 -2 1 5
我们可以看到为负是绝对值最大为2
数据很大记得开long long
#include<iostream>
#include<cmath>
#define ll long long
using namespace std;
int n,max1,op;
const int N=50010;
ll a[N],sum,res;
int main()
{
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>a[i];
}
for(int i=1;i<=n;i++)
{
sum+=a[i];
if(sum<0)
{
res+=abs(sum);
sum=0;
}
}
cout<<res;
return 0;
}