题目如下:
本题的要求很简单,就是求N
个数字的和。麻烦的是,这些数字是以有理数分子/分母
的形式给出的,你输出的和也必须是有理数的形式。
输入格式:
输入第一行给出一个正整数N
(≤100)。随后一行按格式a1/b1 a2/b2 ...
给出N
个有理数。题目保证所有分子和分母都在长整型范围内。另外,负数的符号一定出现在分子前面。
输出格式:
输出上述数字和的最简形式 —— 即将结果写成整数部分 分数部分
,其中分数部分写成分子/分母
,要求分子小于分母,且它们没有公因子。如果结果的整数部分为0,则只输出分数部分。
输入样例1:
5
2/5 4/15 1/30 -2/60 8/3
结尾无空行
输出样例1:
3 1/3
结尾无空行
输入样例2:
2
4/3 2/3
输出样例2:
2
输入样例3:
3
1/3 -1/6 1/8
输出样例3:
7/24
思路解析:题目意思很好理解,先从键盘上输入一个数n,比如5,来控制加数的数目,再从键盘上依次输入这五个数。但注意,输入的形式是分数形式。我们可以通过格式输入符,去控制输入形式。然后这五个数做加法,输出最简式,即这个数的整数部分和分数部分。注意:这个最简式,可以是0,可以没有分数部分,也可以没有整数部分。做加法时,我们可采用两两通分相加。即分子①*分母②+分子②*分母①之后除以分母①*分母②,然后约掉新分子和新分母的最大公约数。
代码如下:
#include <stdio.h>
int gcd(long long int p, long long int q) //最大公约数的求算
{
if (p%q == 0)
{
return q;
}
else
return gcd(q, p%q);
}
int main()
{
long long int a, b,suma = 0, sumb = 1,m;
int n, i;
scanf("%d", &n);
for (i = 0; i < n; i++)
{
scanf("%lld/%lld", &a, &b);
suma *= b; //分子乘以第二个分式的分母
suma = (suma + a*sumb); //分子的和
sumb *= b; //分母通分
m = gcd(suma, sumb); //算出最大公约数
suma /= m; //分子约去最大公约数
sumb /= m; //分母约去最大公约数
}
if (suma&&(suma/sumb==0)) //n个数相加小于1的情况,即没有整数部分
printf("%lld/%lld\n", suma, sumb);
else if (suma%sumb==0) //n个数相加为整数的情况,即没有分数部分
printf("%lld\n", suma / sumb);
else //正常情况,即存在整数部分和分数部分
{
printf("%lld %lld/%lld\n",suma/sumb,suma%sumb,sumb);
}
return 0;
}