水仙花与变种水仙花的问题

目录

一、打印水仙花数

1.1 问题描述

1.2 问题分析

1.3 代码实现

二、变种水仙花

2.1 问题描述

2.2 问题分析

2.3 代码实现

2.3.1 方法一

 2.3.2 方法二

2.4 运行结果

一、打印水仙花数

1.1 问题描述

求出0~100000之间的所有“水仙花数”并输出。
“水仙花数”是指一个n位数,其各位数字的n次方之和确好等于该数本身
如 : 153=1 ^ 3+5 ^ 3+3 ^ 3,则153是一个“水仙花数”。

     在标椎意义上,这个题目打印的不是水仙花数,在百度百科上,水仙花数是这样定义的:水仙花数(Narcissistic number)也被称为超完全数字不变数(pluperfect digital invariant, PPDI)、自恋数、自幂数、阿姆斯壮数或阿姆斯特朗数(Armstrong number),水仙花数是指一个 3 位数,它的每个位上的数字的 3次幂之和等于它本身。例如:1^3 + 5^3+ 3^3 = 153。

1.2 问题分析

     “水仙花数”是指一个n位数,其各位数字的n次方之和确好等于该数本身,我们要想到以下步骤:

  • 求出数字的位数n。
  • 将数的每一位都剥离出来。
  • 求出数的每一位的n次方。
  • 比较n次方之和与该数本身是否相同。

1.3 代码实现

#include <stdio.h>
#include<math.h>
int main()
{
	int i = 0;
	for (i = 0; i <= 100000; i++)
	{
		//求i的位数
		int tmp = i;
		int n = 1;

		while (tmp /= 10)
		{
			n++;
		}
		//得到i的每一位
		tmp = i;
		int sum = 0;
		while (tmp)
		{
		    sum += (int)pow(tmp % 10, n);
			//pow库函数返回的是double类型
			tmp /= 10;
		}
		if (sum == i)
		{
			printf("%d ", i);
		}
	}
	return 0;
}

     在上述代码中我们使用了pow这个库函数,这个库函数的用法可以参照下图:

二、变种水仙花

2.1 问题描述

     变种水仙花数 - Lily Number:把任意的数字,从中间拆分成两个数字,比如1461 可以拆分成(1和461),(14和61),(146和1),如果所有拆分后的乘积之和等于自身,则是一个Lily Number。

例如:

655 = 6 * 55 + 65 * 5

1461 = 1*461 + 14*61 + 146*1

求出 5位数中的所有 Lily Number。

输入描述:

输出描述:

一行,5位数中的所有 Lily Number,每两个数之间间隔一个空格。

2.2 问题分析

     我们要求5位数中的所有Lily Number数,要想到以下步骤:

  1. 产生所有的五位数。
  2. 判断五位数i是否为Lily Number数,将i拆分。
  3. 判断拆分后相乘后之和是否与i相等。

如何拆分呢?
我们举例来说:例如12345

 12345%10 - > 5                          12345/10 - > 1234

 12345%100 - > 45                      12345/100 - > 123

 12345%1000 - >345                   12345/1000 - > 12

 12345%10000 - > 2345              12345/10000 - > 1

     我们发现 i /10的倍数 且 i %10的倍数,可以得到其中一个相乘的数,i 不变,我们需要得到10,100,1000,10000这样10的倍数,对于五位数来说,我们最高需要 /(%)到10000。我们想到使用库函数来产生10的倍数。

2.3 代码实现

2.3.1 方法一

#include <stdio.h>
int main()
{
	int n = 0;
	int tmp = 0;
	for (n = 10000; n < 100000; n++)
	{
		int sum = 0;
		int i = 0;
		for (i = 10; i <= 10000; i *= 10)
		{
			sum += (n % i) * (n / i);
		}
		if (sum == n)
		{
			printf("%d ", sum);
		}
	}
	return 0;
}

 2.3.2 方法二

#include <stdio.h>
#include <math.h>
int main()
{
	int i = 0;
	for (i = 10000; i < 100000; i++)
	{
		int n = 1;
		int sum = 0;
		for (n = 1; n <= 4; n++)
		{
			int k = (int)pow(10, n);
			sum += (i / k) * (i % k);
		}
		if (sum == i)
		{
			printf("%d ", i);
		}
	}
	return 0;
}

2.4 运行结果

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值