目录
一、打印水仙花数
1.1 问题描述
求出0~100000之间的所有“水仙花数”并输出。
“水仙花数”是指一个n位数,其各位数字的n次方之和确好等于该数本身
如 : 153=1 ^ 3+5 ^ 3+3 ^ 3,则153是一个“水仙花数”。
在标椎意义上,这个题目打印的不是水仙花数,在百度百科上,水仙花数是这样定义的:水仙花数(Narcissistic number)也被称为超完全数字不变数(pluperfect digital invariant, PPDI)、自恋数、自幂数、阿姆斯壮数或阿姆斯特朗数(Armstrong number),水仙花数是指一个 3 位数,它的每个位上的数字的 3次幂之和等于它本身。例如:1^3 + 5^3+ 3^3 = 153。
1.2 问题分析
“水仙花数”是指一个n位数,其各位数字的n次方之和确好等于该数本身,我们要想到以下步骤:
- 求出数字的位数n。
- 将数的每一位都剥离出来。
- 求出数的每一位的n次方。
- 比较n次方之和与该数本身是否相同。
1.3 代码实现
#include <stdio.h>
#include<math.h>
int main()
{
int i = 0;
for (i = 0; i <= 100000; i++)
{
//求i的位数
int tmp = i;
int n = 1;
while (tmp /= 10)
{
n++;
}
//得到i的每一位
tmp = i;
int sum = 0;
while (tmp)
{
sum += (int)pow(tmp % 10, n);
//pow库函数返回的是double类型
tmp /= 10;
}
if (sum == i)
{
printf("%d ", i);
}
}
return 0;
}
在上述代码中我们使用了pow这个库函数,这个库函数的用法可以参照下图:
二、变种水仙花
2.1 问题描述
变种水仙花数 - Lily Number:把任意的数字,从中间拆分成两个数字,比如1461 可以拆分成(1和461),(14和61),(146和1),如果所有拆分后的乘积之和等于自身,则是一个Lily Number。
例如:
655 = 6 * 55 + 65 * 5
1461 = 1*461 + 14*61 + 146*1
求出 5位数中的所有 Lily Number。
输入描述:
无
输出描述:
一行,5位数中的所有 Lily Number,每两个数之间间隔一个空格。
2.2 问题分析
我们要求5位数中的所有Lily Number数,要想到以下步骤:
- 产生所有的五位数。
- 判断五位数i是否为Lily Number数,将i拆分。
- 判断拆分后相乘后之和是否与i相等。
如何拆分呢?
我们举例来说:例如12345
12345%10 - > 5 12345/10 - > 1234
12345%100 - > 45 12345/100 - > 123
12345%1000 - >345 12345/1000 - > 12
12345%10000 - > 2345 12345/10000 - > 1
我们发现 i /10的倍数 且 i %10的倍数,可以得到其中一个相乘的数,i 不变,我们需要得到10,100,1000,10000这样10的倍数,对于五位数来说,我们最高需要 /(%)到10000。我们想到使用库函数来产生10的倍数。
2.3 代码实现
2.3.1 方法一
#include <stdio.h>
int main()
{
int n = 0;
int tmp = 0;
for (n = 10000; n < 100000; n++)
{
int sum = 0;
int i = 0;
for (i = 10; i <= 10000; i *= 10)
{
sum += (n % i) * (n / i);
}
if (sum == n)
{
printf("%d ", sum);
}
}
return 0;
}
2.3.2 方法二
#include <stdio.h>
#include <math.h>
int main()
{
int i = 0;
for (i = 10000; i < 100000; i++)
{
int n = 1;
int sum = 0;
for (n = 1; n <= 4; n++)
{
int k = (int)pow(10, n);
sum += (i / k) * (i % k);
}
if (sum == i)
{
printf("%d ", i);
}
}
return 0;
}
2.4 运行结果