LLM | 论文精读 | 基于LLM的智能体的崛起与潜力(The Rise and Potential of Large Language Model Based Agents: A Survey)

论文标题:The Rise and Potential of Large Language Model Based Agents: A Survey

作者:Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong, Yuhao Zhou, Weiran Wang, Changhao Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin, Shihan Dou, Rongxiang Weng, Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan Zheng, Xipeng Qiu, Xuanjing Huang, Tao Gui

期刊:暂无具体期刊信息

DOI:暂无具体DOI信息

email:yuhan.huang@whu.edu.cn

另外: 询问意见,大家认为开展公众号工作,同步推进效果如何?恳请大家给予意见与交流。

创作不易,卑微求取大家的点赞关注~

---------------------------------------------------------------------------------------------------------------------------

在当代人工智能领域,基于大型语言模型(LLM)的智能体正成为推进人工智能系统向通用智能(AGI)迈进的重要方向。本文将对相关的内容进行详细的分析和总结,帮助对这一领域感兴趣的初学者理解其结构、应用及未来的挑战。

一、智能体的基本概念

在人工智能中,智能体(Agent)是能够感知环境、做出决策并采取行动的人工实体。智能体的目标通常是通过与环境的交互来完成特定任务。智能体的概念起源于哲学,并逐渐在计算机科学领域发展起来,成为实现自主智能行为的关键。

1.1 大型语言模型(LLM)与智能体的结合

大型语言模型如GPT-4等具备强大的自然语言理解和生成能力,使得它们成为智能体的理想选择。这些模型能够理解语言中的深层次含义,甚至能够推测出说话者的意图和愿望。将LLM作为智能体的核心,可以让它们更好地理解人类指令、进行推理、制定计划,并最终实现自主决策。

二、LLM智能体的框架:大脑、感知与行动

作者提出了一个用于描述LLM智能体的通用框架,包括三个主要部分:大脑(Brain)感知(Perception)行动(Action)

2.1 大脑(Brain)

大脑模块是智能体的核心,由大型语言模型组成,负责处理信息、推理、决策等任务。大脑模块不仅需要记忆与知识,还具备推理和计划的能力,以便在复杂环境中进行有效决策。

2.1.1 自然语言交互

语言作为交流的媒介,包含了大量的信息,不仅是直观的内容,还包括隐藏在背后的意图和期望。LLM使得智能体能够进行高质量的自然语言交互,不仅限于基础对话,还能深入理解人类意图,并通过多轮对话(multi-turn conversation)达成目标。

2.1.1.1 多轮交互对话

多轮交互对话是实现有效且一致沟通的基础。LLM(如GPT系列、LLaMA系列、T5系列等)可以理解自然语言并生成连贯且符合上下文的响应,这使得智能体能够更好地理解对话内容并处理各种问题。然而,即使是人类,在一次对话中也难免会有困惑和误解,因此需要通过多轮对话来逐步澄清。例如,一个智能客服可以通过多轮对话与用户沟通,帮助解决账户登录问题。用户首先报告登录失败,智能体会询问是否输入了正确的用户名和密码,用户确认后,智能体可能会进一步询问是否需要重置密码,并引导用户完成这一过程。通过这样的多轮交互,智能体能够逐步解决用户的问题,提供有效的帮助。

与传统的文本阅读理解任务(如SQuAD)相比,多轮对话有以下特点:

  1. 互动性:多轮对话涉及多个说话者,信息具有交互性和不连续性。

  2. 多话题:对话可能涉及多个主题,且信息可能冗余,使得文本结构更加复杂。

一般来说,多轮对话的过程可分为三个步骤:

  1. 理解对话历史:智能体首先需要理解之前对话中提到的内容。

  2. 决定采取的行动:根据当前对话,智能体决定下一步的行动。

  3. 生成自然语言响应:最终,智能体会生成自然语言响应,与用户进行交互。

基于LLM的智能体能够利用已有的信息不断改进输出,以便在多轮对话中有效地达成最终目标。

2.1.1.2 高质量的自然语言生成

近年来,LLM展现出了卓越的自然语言生成能力,能够在多种语言中持续产生高质量的文本。从GPT-3到InstructGPT,再到GPT-4,这些模型在文本的连贯性语法准确性方面不断提高,显示出稳定的进步。

例如,研究者See等人发现,这些语言模型能够适应条件文本的风格和内容,并根据用户的需求生成相应风格的文本。同时,Fang等人的研究表明,ChatGPT在语法错误检测方面表现出色,进一步凸显了其强大的语言能力。

在对话环境中,LLM在对话质量的多个关键指标上表现良好,包括内容质量相关性适当性。重要的是,LLM不仅仅复制训练数据,还展示出一定的创造力,生成的新颖文本与人类创作的基准内容相当,甚至更具创造性。同时,通过可控提示进行人类监督,仍然可以对这些语言模型生成的内容进行精确控制。

2.1.1.3 意图和隐含意义的理解

虽然LLM已经足够智能,可以理解明确的指令,但它们在模仿人类对话或充分利用语言所传递的信息方面仍面临一些挑战。理解隐含意义对于智能体与其他智能体或人类进行有效沟通和合作至关重要,它能够帮助智能体解释他人的反馈。例如,在智能家居场景中,用户可能说“有点冷”,智能体能够理解这句话的隐含意图是增加室温,并自动调整暖气设置以提高舒适度,这样的能力对于提高用户体验非常关键。

LLM在理解人类意图方面展现出巨大的潜力,但对于模糊的指令或其他隐含意义,仍然是一个显著的挑战。对人类来说,从对话中掌握隐含意义是自然的,而对智能体来说,需要将隐含意义形式化为奖励函数,以便在未见过的上下文中做出符合说话者偏好的选择。

一种奖励建模的方法是基于反馈推断奖励,这种反馈主要以比较的形式呈现(可能补充有理由)并使用非约束的自然语言。另一种方法是通过描述恢复奖励,使用动作空间作为桥梁。通过对上下文的理解,智能体可以采取高度个性化和准确的行动,满足特定需求。

2.2 感知(Perception)

感知模块就像是智能体的感官,帮助它获取环境信息。感知模块的主要作用是将智能体的感知空间扩展到多模态领域,包括:

  • 文本输入:LLM本身具备处理文本的能力,能理解用户的语言意图。

  • 视觉输入:通过视觉编码器,智能体能够处理图像信息,理解环境中的物体和场景布局。

  • 听觉输入:智能体可以通过音频输入来处理语音信息,实现人类对话中的听觉感知。

2.2.1 文本输入

文本是最常见的信息载体,LLM在处理文本输入时,不仅可以识别显性信息,还能从隐性内容中推测用户的意图。通过训练和微调,LLM能够提高对多种任务的理解和概括能力,尤其是在未见过的新任务上展现出强大的零样本泛化能力。

2.2.2 视觉输入

视觉信息包含了丰富的环境信息,如物体的特征、空间关系等。为了帮助智能体更好地理解视觉信息,研究者使用图像描述生成技术,将图像转换为文本进行处理。此外,视觉编码器(如ViT、VQVAE等)也被用于直接处理图像信息,并与LLM进行结合,形成多模态感知。例如,智能体可以通过视觉输入识别房间内的物体,并提供整理建议,例如识别到地板上散乱的物品后建议用户将其收拾到指定位置,从而提高环境的整洁度。

视觉输入的另一种方式是使用学习到的对齐层,使得视觉编码器与LLM更好地配合,从而提高视觉-语言对齐效果。例如,BLIP-2使用查询Transformer模块作为视觉编码器与LLM之间的中间层,通过学习来提取最有价值的信息。

2.2.3 听觉输入

听觉输入使得智能体能够处理语音信息,从而在对话中实现听觉感知。常见的方法包括级联式音频处理技术,通过听觉编码器将音频信息转换为文本,再由LLM进行处理。

2.3 行动(Action)

行动模块使得智能体能够与外部世界进行交互,包括生成文本、使用工具,甚至通过实体动作影响周围环境。具体来说:

  • 文本输出:通过生成高质量的语言响应来实现人机交互。

  • 工具使用:智能体可以通过使用外部工具来增强自身能力,例如访问网络API获取额外信息。

  • 实体动作:通过物理硬件,如机器人手臂,智能体可以在物理世界中采取行动。

三、LLM智能体的应用场景

LLM智能体的应用场景主要包括以下几类:

3.1 单一智能体应用

一个单一的智能体可以独立完成很多任务,如对话应答、撰写内容、编程辅助等。这些应用中的智能体通过自然语言与用户交互,满足用户的各种需求。

3.1.1 任务导向部署

LLM智能体可以在任务导向的场景中得到广泛应用。例如,智能体可以通过文本交互帮助用户完成各种具体任务,如文档写作、信息检索等。在这些场景中,智能体的目标是根据用户的指令完成特定任务,其成功与否取决于任务的完成度。例如,在客户支持中,智能体可以帮助客户解决常见问题,如账户登录、密码重置等,通过自然语言交互提供高效的支持和解决方案,提升用户体验。

3.1.2 创新导向部署

除了任务导向的应用,LLM智能体还可以用于激发创新。例如,智能体可以与用户共同创作文章、生成新的想法或帮助进行头脑风暴。在这种场景中,智能体更多地扮演一种协作者的角色,通过生成新的内容或想法来激发用户的创意。

3.1.3 生命周期导向部署

智能体还可以在生命周期的不同阶段帮助用户管理信息和任务。例如,在项目的早期阶段,智能体可以帮助规划和组织任务;在中期,智能体可以跟踪任务进度;在后期,智能体可以帮助总结和归档相关信息。

3.2 多智能体协作

在某些情况下,多个智能体需要一起协作完成复杂的任务。例如,一个虚拟厨房中可以有一个智能体负责订购食材,另一个智能体负责烹饪计划,它们通过合作实现整个烹饪流程。

3.2.1 协作交互以实现互补性

多智能体系统中的智能体可以通过协作互补彼此的能力。例如,在仓库管理中,一个智能体可以负责扫描物品,另一个智能体负责搬运物品,它们通过合作来提高整体的效率并完成整个物流流程。例如,一个智能体可以负责数据的收集,另一个智能体负责数据分析,它们通过协作完成整个数据处理过程。

3.2.2 对抗交互以促进进步

除了协作,多智能体系统中的智能体还可以通过对抗性的交互来促进进步。例如,在游戏对抗中,不同智能体之间的竞争可以推动它们不断优化自己的策略,从而提高整体性能。

3.3 人类与智能体的互动

智能体还可以和人类一起工作,形成协作。例如,在教育场景中,智能体可以作为教师的助理,帮助批改作业、解答学生问题。

3.3.1 指导-执行范式

在这种互动中,人类作为指导者,智能体作为执行者。人类负责给出目标和任务,智能体负责执行具体的操作。

3.3.2 平等合作范式

在这种范式中,人类和智能体之间的关系更加平等,智能体可以根据自己的判断提出建议,与人类一起讨论并完成任务。例如,智能体与人类共同计划旅行,智能体提供建议并与用户讨论决定,如选择目的地、制定行程和预订酒店等,这样的合作可以更好地展示平等合作的场景。

四、智能体社会:从个体到集体

智能体不仅可以独立存在,也可以形成“智能体社会”。当多个智能体在同一环境中交互时,可能会出现合作、竞争等社会现象,这些模拟社会可以帮助我们更好地理解智能体之间的行为模式,甚至为人类社会提供新的洞察。

4.1 智能体的行为和个性

每个智能体在智能体社会中都可能展现出不同的行为和个性。例如,有的智能体倾向于合作,有的智能体倾向于竞争。通过对这些行为模式的观察,我们可以更好地理解智能体之间的动态关系。

4.2 智能体社会的环境

智能体社会可以存在于不同类型的环境中,包括基于文本的环境、虚拟沙盒环境以及物理环境。在不同环境中,智能体的行为会有所不同。

4.3 智能体社会的模拟

通过模拟智能体社会,我们可以观察到一些新的社会现象,例如群体中的合作和竞争。通过这些模拟,我们可以为人类社会提供一些新的洞察,帮助理解社会行为的本质。

五、LLM智能体面临的挑战与未来展望

虽然LLM智能体在多个领域表现出巨大的潜力,但它们也面临一些挑战:

  • 隐私与安全:如何保证用户数据的安全是一个重要问题。

  • 知识的可信度:LLM在生成内容时可能出现幻觉,导致内容与事实不符,这在严谨的应用场景中是一个重要瓶颈。

  • 规模化问题:当智能体数量增加时,如何管理它们之间的高效协作是需要进一步研究的内容。

未来,LLM智能体可以通过更多的反馈机制多模态感知强化学习方法不断改进,解决现有的问题,使其在更广泛的领域中实现应用。

六、总结

基于大型语言模型的智能体通过大脑、感知和行动三个模块,展现了强大的自然语言交互和环境感知能力。无论是在单一应用还是在多智能体协作、人与智能体交互方面,LLM智能体都表现出了巨大的潜力。尽管面临挑战,但未来的智能体将会更加智能化、自动化,并且在人类的日常生活中扮演越来越重要的角色。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

香蕉也是布拉拉

随缘打赏不强求~ 谢谢大家

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值