NoteBook_Day4——《系统集成项目管理工程师5小时学会考点速记法则》(韦建召 李志霞 主编)

本文探讨了客户数据的两种视角(企业促销性和客户交易性)、电子商务的不同模式(B2B、B2C、C2C、O2O)、商业智能的组成部分和功能,以及大数据的来源、概念和关键技术,如HDFS、BigTable等。
摘要由CSDN通过智能技术生成

21、客户数据

1. 描述性数据

(1)个人客户:

  • 客户的姓名
  • 年龄
  • ID
  • 联系方式

(2)企业客户:

  • 企业的名称
  • 规模
  • 联系人
  • 法人代表

2. 促销性数据(从企业的角度)

  • 用户产品使用情况调查数据
  • 促销活动记录数据
  • 客服人员的建议数据
  • 广告数据

3. 交易性数据(从客户的角度)

  • 购买记录数据
  • 投诉数据
  • 请求提供咨询
  • 其他服务的相关数据
  • 客户建议数据

两个特征:

1. 凡是从企业的角度(企业是主语),都是促销性数据,因为企业促销;

2. 凡是从客户的角度(客户是主语),都是交易性数据,因为客户交易;

22、电子商务 

B2B企业与企业(如:阿里巴巴)
B2C企业与消费者(如:京东、当当、苏宁)
C2C消费者与消费者(如:淘宝)
O2O线上购买与线下消费相结合

B---企业;C---消费者;O---线上或线下;

 23、商业智能(BI)

1. 组成

(1)数据仓库

(2)联机分析处理(OLAP)

【注意与OLTP的区别】

(3)数据挖掘

(4)数据备份和恢复

2. 核心

(1)数据仓库

(2)数据挖掘

3. 主要功能

(1)数据仓库

(2)数据ETL:抽取、转换、装载

(3)数据统计输出(报表)

(4)分析功能

4. 实现的三个层次

(1)数据报表

(2)多维数据分析

(3)数据挖掘

【功能有仓库;实现有挖掘】

24、大数据的来源、概念、特点

1. 大数据的来源

        大数据的来源包括网站浏览轨迹、各种文档和媒体、社交媒体信息、物联网传感信息、各种程应和APP的日志文件等;

2. 大数据的概念

        大数据是指无法在一定时间内用传统数据库软件工具对其内容进行抓取、管理和处理的数据集合(即:无法用传统方法在一定时间内处理);

3. 大数据的特点(5V)

大量(Volume)数据量巨大
多样(Variety)数据类型繁多
价值(Value)价值密度低;应用价值高
高速(Velocity)处理速度快
真实性(Veracity)来自各种网络终端的行为或痕迹

 25、大数据的关键技术

技术存储技术管理技术
存储存储管理分析技术
名称

GFS;

HDFS;

BigTable;

Hbase;

ManReduce;

Hadoop - MapReduce;

备注属于文件系统属于非关系型数据库系统是一种编程模型,用于分析运算

【 Chukwa 构建在 Hbase 和 MapReduce 框架之上,属于数据收集系统,用于展示、监控、分析数据】

(1)用文件存储;以 FS 结尾的都是文件;

(2)用数据库存储管理;以 Table 和 Base 结尾的都是数据库;

(3)用编程模型分析;以 Reduce 结尾的都是编程模型;

(4)存储和存储管理归类到存储技术;分析技术归类到管理技术;

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值