2022.1.8自习(dfs迷宫模板题)

预备役开启搜索题组,要求是至少完成9题,由于之前初次接触搜索做的是迷宫的题目,我就先试了一下这道迷宫的题目,一次ac!!开心,不过这道题就是套用搜索的基本模板即可。

题目

题目背景

给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过。给定起点坐标和终点坐标,问: 每个方格最多经过1次,有多少种从起点坐标到终点坐标的方案。在迷宫中移动有上下左右四种方式,每次只能移动一个方格。数据保证起点上没有障碍。

题目描述

输入格式

第一行N、M和T,N为行,M为列,T为障碍总数。第二行起点坐标SX,SY,终点坐标FX,FY。接下来T行,每行为障碍点的坐标。

输出格式

给定起点坐标和终点坐标,问每个方格最多经过1次,从起点坐标到终点坐标的方案总数。

输入输出样例

输入 #1

2 2 1
1 1 2 2
1 2

输出 #1复制

1

说明/提示

【数据规模】

1≤N,M≤5

做题分析&思路

首先输入的数据有三行,我们先全局定义好相关变量,便于调用函数。走迷宫嘛,我们可以用到dfs(深度优先搜索),参数为起点坐标。

#include<stdio.h>
int n,m,t,sum=0;//N为行,M为列,T为障碍总数
int sx,sy,fx,fy,cx,cy;//起点坐标SX,SY,终点坐标FX,FY, 障碍坐标CX,CY
int a[6][6],book[6][6];
void dfs(int x,int y)
{

}
int main()
{

return 0;
}

(由题知要输出的是路径数,即每到一次终点sum++,最终输出sum即可。)

根据题目要求输入格式填充主函数。

注意在运用dfs时,要先将起点位置标记走过。

特别要注意的是两个return;的位置和作用!这里容易出错哦。

int main()
{
    scanf("%d %d %d",&n,&m,&t);
    scanf("%d %d %d %d",&sx,&sy,&fx,&fy);
    int k=0;
    while(t--)
    {
        scanf("%d %d",&cx,&cy);
        a[cx][cy]=1;//标记障碍处
    }
    book[sx][sy]=1;//标记起点已经在路径中
    dfs(sx,sy);
    printf("%d",sum);
    return 0;
}

然后呢!填充dfs函数即可(该函数的两个参数分别为起点横坐标和起点纵坐标)

void dfs(int x,int y)
{
    int next[4][2]={{0,1},//向右
                    {1,0},//向下
                    {0,-1},//向左
                    {-1,0}};//向上

    if(x == fx&&y == fy)//到达终点
    {
        sum++;
        return;//这里很重要!返回之前一步(最近一次调用dfs的地方)
    }

    int tx,ty,k;
    //枚举四种走法
    for(k=0;k<4;k++)
    {
        tx=x+next[k][0];
        ty=y+next[k][1];

        if(tx<1||ty<1||tx>n||ty>m)
            continue;
        if(a[tx][ty] == 0&&book[tx][ty] == 0)
        {
            book[tx][ty]=1;
            dfs(tx,ty);
            book[tx][ty]=0;
        }
    }
    return ;//返回到上一次递归调用
}

完整代码如下:

#include<stdio.h>
int n,m,t,sum=0;//N为行,M为列,T为障碍总数
int sx,sy,fx,fy,cx,cy;//起点坐标SX,SY,终点坐标FX,FY, 障碍坐标CX,CY
int a[6][6],book[6][6];
void dfs(int x,int y)
{
    int next[4][2]={{0,1},//向右
                    {1,0},//向下
                    {0,-1},//向左
                    {-1,0}};//向上

    if(x == fx&&y == fy)//到达终点
    {
        sum++;
        return;
    }

    int tx,ty,k;
    //枚举四种走法
    for(k=0;k<4;k++)
    {
        tx=x+next[k][0];
        ty=y+next[k][1];

        if(tx<1||ty<1||tx>n||ty>m)
            continue;
        if(a[tx][ty] == 0&&book[tx][ty] == 0)
        {
            book[tx][ty]=1;
            dfs(tx,ty);
            book[tx][ty]=0;
        }
    }
    return ;
}
int main()
{
    scanf("%d %d %d",&n,&m,&t);
    scanf("%d %d %d %d",&sx,&sy,&fx,&fy);
    int k=0;
    while(t--)
    {
        scanf("%d %d",&cx,&cy);
        a[cx][cy]=1;//标记障碍处
    }
    book[sx][sy]=1;//标记起点已经在路径中
    dfs(sx,sy);
    printf("%d",sum);
    return 0;
}

 但是还是不太会灵活运用,还要加油!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值