解题思路:
对含0列: 非0值直接纳入结果, 原因是含0列的手套, 拿到了是一定不可能配对成功的, 相当于是最坏情况.
对非含0列: 求和看哪一行的和更小, 和更小的一行除了数目最小的全拿, 比如下面的情况就是, left数组的非零列和较小, 那么对left数组就拿6和4(最坏拿取情况), 对最小的数2就只拿一个, 这样保证在最坏的拿取情况下, left每个颜色都起码有一个. right就只拿一个就行, 因为left保证了每个颜色都有, 所以right随便拿一个都一定能与left配对成功.
public static int findMinimum(int n, int[] left, int[] right) {
//Sum用于比较左右哪个的总数最少, 少的用来多取, 多的用来只取一个
int leftSum = 0;
int rightSum = 0;
//记录数组中除空最小值
int leftMin = Integer.MAX_VALUE;
int rightMin = Integer.MAX_VALUE;
int ret = 0;
for (int i = 0; i < n; i++) {
int l = left[i];
int r = right[i];
if (l == 0) {
//l==0, 则r全取
ret += r;
} else if (right[i] == 0) {
//r==0, 则l全取
ret += l;
} else {
//都不等于零, 累加入Sum
rightSum += r;
leftSum += l;
//获得除了0那一列的最小值
if (l < leftMin)
leftMin = l;
if (r < rightMin)
rightMin = r;
}
}
if (leftSum < rightSum) {
ret += (leftSum - leftMin + 2);
} else if (leftSum > rightSum){
ret += (rightSum - rightMin + 2);
} else {
if (leftMin > rightMin) {
ret += (leftSum - leftMin + 2);
} else {
ret += (rightSum - rightMin + 2);
}
}
return ret;
}