25代码是随想录训练营day25|回溯part02

文章介绍了两种使用C++的回溯算法解决问题:一是求解给定数字k和n时的所有可能组合,使得数字之和为n;二是给定一个数字序列,找出所有可能的字母组合,对应于电话号码按键上的字母。这两种方法都利用了递归和回溯策略来生成所有可能的解决方案。
摘要由CSDN通过智能技术生成

1、组合总和问题

组合总和问题

class Solution {
public:
    void backtracking(int k, int n, int startIndex, vector<vector<int>>& result,  vector<int>& path) {
        if (path.size() == k) {
            if (n == 0) result.push_back(path);
            return ;
        }
        // i <= 9 - (k - path.size()) + 1 剪枝
        for (int i = startIndex; i <= 9 - (k - path.size()) + 1; i++) {
            path.push_back(i);
            backtracking(k, n - i, i + 1, result, path);	// n-1 回溯
            path.pop_back();	// 回溯
        }
    }
    vector<vector<int>> combinationSum3(int k, int n) {
        vector<vector<int>> result;
        vector<int> path;
        backtracking(k, n, 1, result, path);
        return result;
    }
};

2、电话号码的字母组合

电话号码的字母组合

class Solution {
public:
    string letterMap[10] = {
        "",     // 0
        "",     // 1
        "abc",  // 2
        "def",  // 3
        "ghi",  // 4
        "jkl",  // 5
        "mno",  // 6
        "pqrs", // 7
        "tuv",  // 8
        "wxyz"  // 9
    };
    vector<string> result;
    string s;
    void backtracking(string digits, int index) {
        if (index == digits.size()) {
            result.push_back(s);
            return ;
        }
        int digit = digits[index] - '0';
        string letter = letterMap[digit];
        for (int i = 0; i < letter.size(); i++) {
            s.push_back(letter[i]);
            backtracking(digits, index + 1);
            s.pop_back();
        }
    }
    vector<string> letterCombinations(string digits) {
        if (digits.size() == 0) return result;
        backtracking(digits, 0);
        return result;
    }
};
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值