abc 260 E 思维差分

题意:https://www.luogu.com.cn/problem/AT_abc260_e

思路:首先,对于每个好序列,她一定可以往左右延申。所以我们对于每个起点寻找最小的好序列往右边延申即可保证不重复计数。我们可以将原序列以a从小到大排序,其实我们可以发现左端点没往右边动一位,便是将右节点有可能序列第二维的最大值。那么找到左右端点之后我们将最小的长度++,最远--,然后前缀和就是每个的答案了。

/*keep on going and never give up*/
#include<cstdio>
#include<iostream>
#include<queue>
#include<algorithm>
using namespace std;
#define int long long
typedef pair<int, int> pii;
#define lowbit(x) x&(-x)
#define endl '\n'
#define wk is zqx ta die
struct node {
	int a, b;
} q[200005];
int f[200005];
int ans[200005];
bool cmp(node a, node b) {
	return a.a < b.a;
}
int minn[200005];
int maxn[200005];
signed main() {
	std::ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);
	int n, m;
	cin >> n >> m;
	for (int i = 1; i <= n; i++) {
		cin >> q[i].a >> q[i].b;
	}
	sort(q + 1, q + 1 + n, cmp);
	for (int i = 1; i <= n; i++) {
		f[i] = q[i].a;
	}
	minn[0] = 1e18;
	for (int i = 1; i <= n; i++) {
		minn[i] = min(minn[i - 1], q[i].b);
		maxn[i] = max(maxn[i - 1], q[i].b);
	}
	int r = q[n].a;
	for (int l = 1; l <= m; l++) {
		int pos = lower_bound(f + 1, f + n + 1, l) - f;
		if (pos == 1) {
			ans[r - l + 1]++;
			ans[m - l + 2]--;
		} else {
			if (minn[pos - 1] < l) {
				break;
			} else {
				r = max(r, maxn[pos - 1]);
			}
			ans[r - l + 1]++;
			ans[m - l + 2]--;
		}
	}
	for (int i = 1; i <= m; i++) {
		ans[i] += ans[i - 1];
	}
	for (int i = 1; i <= m; i++) {
		cout << ans[i] << " ";
	}
	cout << endl;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值