题意:https://www.luogu.com.cn/problem/AT_abc260_e
思路:首先,对于每个好序列,她一定可以往左右延申。所以我们对于每个起点寻找最小的好序列往右边延申即可保证不重复计数。我们可以将原序列以a从小到大排序,其实我们可以发现左端点没往右边动一位,便是将右节点有可能序列第二维的最大值。那么找到左右端点之后我们将最小的长度++,最远--,然后前缀和就是每个的答案了。
/*keep on going and never give up*/
#include<cstdio>
#include<iostream>
#include<queue>
#include<algorithm>
using namespace std;
#define int long long
typedef pair<int, int> pii;
#define lowbit(x) x&(-x)
#define endl '\n'
#define wk is zqx ta die
struct node {
int a, b;
} q[200005];
int f[200005];
int ans[200005];
bool cmp(node a, node b) {
return a.a < b.a;
}
int minn[200005];
int maxn[200005];
signed main() {
std::ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int n, m;
cin >> n >> m;
for (int i = 1; i <= n; i++) {
cin >> q[i].a >> q[i].b;
}
sort(q + 1, q + 1 + n, cmp);
for (int i = 1; i <= n; i++) {
f[i] = q[i].a;
}
minn[0] = 1e18;
for (int i = 1; i <= n; i++) {
minn[i] = min(minn[i - 1], q[i].b);
maxn[i] = max(maxn[i - 1], q[i].b);
}
int r = q[n].a;
for (int l = 1; l <= m; l++) {
int pos = lower_bound(f + 1, f + n + 1, l) - f;
if (pos == 1) {
ans[r - l + 1]++;
ans[m - l + 2]--;
} else {
if (minn[pos - 1] < l) {
break;
} else {
r = max(r, maxn[pos - 1]);
}
ans[r - l + 1]++;
ans[m - l + 2]--;
}
}
for (int i = 1; i <= m; i++) {
ans[i] += ans[i - 1];
}
for (int i = 1; i <= m; i++) {
cout << ans[i] << " ";
}
cout << endl;
return 0;
}