单、多目标智能算法
文章平均质量分 89
1 支付39.9元获得本专栏的任意两篇博客完整代码(至订阅日起,5日内有效,逾期不赠送,私信博主领取);
2 提供订阅付费专栏支付凭证;
3 本专栏为虚拟产品,一经付款概不退款,敬请谅解。
智能算法与应用(Python&Matlab代码),包含单目标、多目标、以及改进单目标、多种算法结合创新。
荔枝科研社
行百里者,半于九十。
展开
-
【改进优化算法】混合二进制灰狼裸鼹鼠算法HbGNMR(Matlab代码实现)
提出了一种新的混合二进制变体灰狼优化器(GWO)和裸鼹鼠算法(NMRA)的算法,称为HbGNMR,旨在克服基本NMRA的探索不足和局部最优停滞问题,以及GWO的开发不足。此外,分析了两个家族的十四个新的时变二进制传输函数:七个S形函数和七个V形函数。在这些传输函数中,$TV_{V5}$ 被确定为最有效的,能够将解从连续搜索空间转换为二进制搜索空间,并在探索和开发阶段之间保持平衡。文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。行百里者,半于九十。原创 2024-03-05 09:38:16 · 87 阅读 · 0 评论 -
【优化算法比较】‘ABC‘,‘GA‘,‘PSO‘,‘SSA‘,‘GWO‘,‘CSO‘,‘DBO‘,‘BWO‘,‘DE‘,‘OBLDE‘优化算法比较(Matlab代码实现)
10. OBLDE(基于优势学习的差分进化算法):结合了优势学习机制的差分进化算法,具有较好的收敛速度和全局搜索性能。7. DBO(混沌蝗虫优化算法):基于混沌理论和蝗虫觅食行为的优化算法,具有较好的全局搜索性能和收敛速度。6. CSO(细菌觅食算法):模拟细菌觅食行为的优化算法,适用于连续优化问题,但可能受到参数选择的影响。8. BWO(蝇虫优化算法):模拟蝇虫觅食行为的优化算法,适用于复杂优化问题,但可能受到参数选择的影响。title(['函数收敛曲线',num2str(func_num)])原创 2024-02-19 09:41:22 · 128 阅读 · 0 评论 -
【2023年算法比较】13种最新智能优化算法大比拼(Matlab代码实现)
if ~strcmp(number,'F16')&&~strcmp(number,'F9')&&~strcmp(number,'F11') %这里是因为这几个函数收敛太快,不适用于semilogy,直接plot。8. CDO(Colliding Bodies Optimization):基于物体碰撞行为的优化算法,模拟物体之间的碰撞和反弹来搜索最优解。3. WOA(Whale Optimization Algorithm):基于鲸鱼社会行为的优化算法,模拟鲸鱼的追逐和协作行为来搜索最优解。原创 2024-02-19 09:35:53 · 181 阅读 · 0 评论 -
【改进优化算法】改进混沌原子搜索优化比较和原始混沌原子搜索优化算法比较(Matlab代码实现)
受进化启发的算法是一种随机的、基于种群的方法,因此保护种群的多样性对于算法的迭代可持续发展非常重要。举例来说,大规模按需提供交通服务的拼车公司的出现,以及相应需求数据集的日益普及,发展了有效处理路线网络的新的复杂优化问题。在 PSO 中,每个座席都在搜索空间中移动以改进其解决方案,并保留他们的个人最佳位置和迄今为止找到的全球最佳位置,通过这些位置在本地和社交上更新他们的位置。随着GA的日益普及,文献中出现了相当多的其他基于进化的算法,包括进化策略(ES)[16]、差分进化(DE)[17]、原创 2023-11-14 09:40:29 · 81 阅读 · 0 评论 -
【2023年10月最新优化算法】【多种算法比较】传播搜索算法:基于物理场的工程应用优化算法(Matlab代码实现)
因此,使用经过研究的数学模型、简单的软件代码和快速收敛促使我们提出了一种新的元启发式优化器,称为传播搜索算法 (PSA),由电压和电流波形沿长传输线传播的刺激。],椋鸟[20],兔子[21],青蛙[22],蝴蝶[23],鬣狗[24],爬行动物[25],coati [26],豹子[27]和鹰[之后,在1995年,肯尼迪和埃伯哈特提出了一种新的简单算法,即PSO算法,该算法受到鸟类和鱼类的蜂群性能的刺激[开发一种新的基于物理的元启发式算法,称为传播搜索算法(PSA),其灵感来自沿长传输线的电压和电流波形传播。原创 2023-10-27 11:30:32 · 150 阅读 · 0 评论 -
【最新优化算法】草原犬优化算法(Matlab代码实现)
随着食物来源的枯竭,它们会寻找新的食物来源,并在周围建造新的洞穴,探索整个殖民地或问题空间,以发现新的食物来源或解决方案。随着食物来源的枯竭,它们会寻找新的食物来源,并在周围建造新的洞穴,探索整个殖民地或问题空间,以发现新的食物来源或解决方案。随着文献中提出的元启发式算法的数量以及一些著名的元启发式算法的存在,它乞求回答对新的元启发式算法的需求。然而,新出现的具有挑战性的优化问题以及提供能够持续获得更好结果的鲁棒算法的需求一直在推动现有算法的改进版本或完全新算法,也遵循“无免费午餐”(NFL)定理[原创 2023-10-26 16:19:46 · 222 阅读 · 0 评论 -
【2023年10月最新优化算法】肝癌优化算法(Matlab代码实现)
该算法的效率在 2020 年 IEEE 进化计算大会 (CEC'2020) 基准函数上进行了测试,并与七种广泛使用的元启发式算法进行了比较,包括遗传算法 (GA)、粒子群优化 (PSO)、差分进化 (DE)、自适应引导差分进化算法 (AGDE)、改进多算子差分进化 (IMODE)、哈里斯霍克斯优化 (HHO)、龙格-库塔优化算法 (RUN), 我们制定了 meaN oF vectOrs (INFO) 和冠状病毒群体免疫优化器 (CHIO)。研究人员努力实现更好的解决方案,并根据特定的优化问题定制这些算法。原创 2023-10-20 10:02:56 · 129 阅读 · 0 评论 -
【2023年8月最新算法】红尾鹰优化算法(Matlab代码实现)
将所提出的算法与最近的八种算法进行了比较,以确认其对解决这些问题的贡献。考虑的算法是农田肥力优化器(FO),非洲秃鹫优化算法(AVOA),山瞪羚优化器(MGO),大猩猩部队优化器(GTO),COOT算法,饥饿游戏搜索(HGS),Aquila优化器(AO)和哈里斯鹰优化(HHO)。第二和第三阶段模仿SA的行为,同时移动到最佳位置,使用每个点的前一个站点的信息。用于基于群体的算法,如 SA 和 HA。.因此,在搜索过程的早期阶段,设计良好的优化器的探索行为必须具有足够丰富的随机特性,以有效地分发更多的随机解。原创 2023-10-20 09:53:14 · 380 阅读 · 2 评论 -
智能优化算法——混合领导优化算法(Matlab&Matlab代码实现)
本文提出了一种新的优化算法,称为基于领导者的混合优化( HLBO ),它适用于优化挑战。HLBO的主要思想是在混合领导者的指导下对算法种群进行引导。将HLBO的阶段分为勘探和开采两个阶段进行数学建模。通过对23个不同类型的单峰和多峰标准测试函数的求解,检验HLBO在优化中的有效性。单峰函数的优化结果表明,HLBO在局部搜索中具有较高的开发能力,能够更好地收敛到全局最优;而多峰函数的优化结果表明,HLBO在全局搜索中具有较高的探索能力。原创 2023-09-24 16:13:18 · 150 阅读 · 0 评论 -
基于Tent混沌生物地理学的优化(CBBO)算法(Matlab代码实现)
基于生物地理学的优化(BBO)算法是一种受生物地理学启发的新型进化算法。类似地,与其他进化算法一样,局部最优的陷阱和缓慢的收敛速度是它在解决具有挑战性的实际问题时遇到的两个可能的问题。然而,由于这种算法的新颖性,文献中很少有关于缓解这两个问题的文献。此外,结果表明,混沌选择和迁移运算符的组合导致最高性能。].无论它们的结构如何不同,这些算法通常会创建一个随机种群,并在预定义的世代数上进化它。],基于概率的增量学习(PBIL)和磷虾群(KH)算法[],进化策略(ES),差分进化(DE)[行百里者,半于九十。原创 2023-08-16 14:25:55 · 131 阅读 · 0 评论 -
改进的混沌电磁场优化 (ICEFO)算法(Matlab代码实现)
ICEFO算法的改进主要体现在混沌映射和电磁场模拟的策略上,以提高搜索的效率和收敛性。改进的混沌电磁场优化(Improved Chaotic Electromagnetic Field Optimization, ICEFO)算法是一种基于混沌和电磁场优化原理的优化算法,用于解决优化问题。该算法结合了混沌映射和电磁场优化的特点,通过模拟电磁场的行为来搜索最优解。电磁场模拟:根据个体的适应度值和混沌映射的结果,模拟个体在电磁场中的行为。位置更新:根据电磁场模拟的结果,更新个体的位置,以寻找更优的解。原创 2023-07-06 10:14:32 · 107 阅读 · 0 评论 -
【改进算法】混合鲸鱼WOA和BAT算法(Matlab代码实现)
㼿鲸鱼优化算法(whale optimization algorithm, WOA)是一种受自然启发的元启发式优化算法,由Mirjalili和Lewis于2016年提出。㼿因此,本文对WOA进行了系统的meta分析调查,以帮助研究者将其应用于不同领域或与其他常用算法进行混合。本文从WOA的算法背景、特点、局限性、改进、杂交和应用等方面对WOA进行了深入介绍。㼿en,建立了WOA修饰和杂交的统计结果,并与最常用的优化算法和WOA进行了比较。此外,我们的研究为提出一种混合WOA和BAT算法的新技术铺平了道路。原创 2023-06-15 19:16:10 · 126 阅读 · 0 评论 -
山瞪羚优化算法:一种新的面向全局优化问题的受自然启发的元启发式算法(Matlab代码实现)
由于缺乏准确的优化方法[[1],[2],[3],[4],近似算法已被提出为处理高维和多状态复杂问题的新技术。元启发式算法在合理的时间内提供可接受的解决方案,但不能保证为给定的优化问题找到最佳的最佳解决方案[[5],[6],[7]]。尽管如此,与启发式算法不同,它们不依赖于问题的类型,可以应用于各种问题。探索是指在响应空间中进行广泛的搜索,而开发是指在搜索过程中获得的经验的生产力,并专注于响应空间中更有希望的领域。此外,根据执行的测试,即使在增加优化问题的维度时,MGO也能保持其搜索功能并显示出良好的性能。原创 2023-06-13 20:36:10 · 155 阅读 · 0 评论 -
【改进算法】基于改进供给需求优化算法[FDB-SDO](Matlab代码实现)
FDBSDO摘要:本研究开发了一种改进版本的基于供给需求的优化(SDO)算法,这是一种最新开发的元启发式搜索方法。为了测试和验证开发的基于FDB的SDO算法的性能,使用了现代基准测试套件CEC 2017。在30/50/100维度上设计这些问题,以测试和验证所提算法在不同类型和维度的搜索空间中的性能。根据分析结果,在所有实验研究中,FDBSDO 变体与基本算法相比表现出更好的性能,具有约束/无约束、单峰/多模态/混合/组合问题类型和不同维度。FDB选择方法的实现消除了SDO算法过早收敛的问题。原创 2023-06-12 09:40:53 · 120 阅读 · 0 评论 -
【多种优化算法比较】混沌引力搜索算法(CGSA)(Matlab代码实现)
然后,该算法经过多次迭代,每次迭代都给出可行的候选解决方案,直到满足条件的结束。已经看到,如果优化算法具有良好的探索能力,那么它将缺乏良好的开发能力,反之亦然(简单来说,如果一个优化算法以高性能解决了某个问题,那么它在解决其他类型的优化问题时很有可能表现不佳。研究人员使用各种优化技术,如GA,PSO,DE,GSA,BBO,来解决其他领域的应用问题。,1995),基于蚂蚁搜索行为的ACO (Dorigo and Caro, 1995),BBO (Simon,此外,还有数学驱动的优化算法,如SCA(原创 2023-06-11 09:56:16 · 106 阅读 · 0 评论 -
【改进粒子群优化算法】自适应惯性权重粒子群算法(Matlab代码实现)
文献来源: 部分代码:%% PSO Parameters CostFunction=@(x) CostFun(x); % Cost Functionw=1; % Inertia Weightwdamp=0.99; % Inertia Weight Damping Ratioc1=1.5; % Personal Learning Coefficientc2=2.0; % Global Learning Coefficien原创 2023-05-12 17:13:31 · 205 阅读 · 0 评论 -
【单目标优化算法】瞪羚优化算法(Matlab代码实现)
摘要基于瞪羚在捕食者主导环境下的生存能力,提出了一种基于种群的元启发式算法——瞪羚优化算法(GOA)。每一天,瞪羚都知道,如果它不能跑得比它的捕食者更快,它就会成为当天的肉,为了生存,瞪羚必须不断地逃离它们的捕食者。这些信息对于提出一种新的元启发式算法至关重要,该算法利用瞪羚的生存能力来解决现实世界的优化问题。将GOA的结果与其他九种最先进的算法进行了比较。它还表明,GOA的性能更好,或者在某些情况下,与一些最先进的算法相比非常有竞争力。结果表明,GOA是一种有效的优化工具,可用于解决不同优化领域的问题。原创 2023-04-23 10:33:45 · 152 阅读 · 0 评论 -
【单目标优化算法】麻雀优化算法(Python代码实现)
1]王维高,魏云冰,滕旭东等.基于麻雀搜索优化支持向量机的短期风机发电功率预测[J].智能计算机与应用,2022,12(01):119-123.# ParaValue=[-100,100,30] [-100,100]代表初始范围,30代表dim维度。# 标准测试函数采用单峰测试函数(Dim = 30),计算适应度。def fun(F,X): # F代表函数名,X代表数据列表。博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。部分理论来源于网络,如有侵权请联系删除。行百里者,半于九十。原创 2023-04-22 09:10:34 · 554 阅读 · 5 评论 -
【单目标优化算法】二元引力搜索算法【BGSA】(Matlab代码实现)
该算法基于牛顿引力:“宇宙中的每个粒子都以与其质量乘积成正比的力吸引所有其他粒子。,并且与它们之间距离的平方成反比”。BGSA 是 GSA 的二进制版本。博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。GSA是一种基于重力和质量相互作用定律的优化算法。部分理论来源于网络,如有侵权请联系删除。行百里者,半于九十。原创 2023-04-20 20:57:31 · 130 阅读 · 0 评论 -
【单目标优化算法】浣熊优化算法【Coati优化算法】(Matlab代码实现)
博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。部分理论来源于网络,如有侵权请联系删除。行百里者,半于九十。原创 2023-04-16 09:53:34 · 441 阅读 · 0 评论 -
基于自适应t分布突变黏菌的显性群算法(Matlab代码实现)
博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。部分理论来源于网络,如有侵权请联系删除。基于自适应t分布突变黏菌的显性群算法。行百里者,半于九十。原创 2023-04-13 14:16:42 · 220 阅读 · 0 评论 -
粘液模具算法:随机优化的新方法(Matlab代码实现)
博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。部分理论来源于网络,如有侵权请联系删除。粘液模具算法:随机优化的新方法。行百里者,半于九十。原创 2023-04-13 08:51:48 · 118 阅读 · 0 评论 -
梯度优化算法和KNN结合研究(matlab代码实现)
因此,开发一种优化方法,该方法使用梯度方法跳过不可行点并向可行区域移动,并利用基于人口的优化方法的功能,将是非常值得的。因此,本研究的独特之处之一是将基于梯度的方法的概念与基于人群的方法相结合,以创建一种强大而有效的算法来克服以前方法的缺点。尽管已经开发了多种优化算法,但它们经常无法为此类具有挑战性的问题提供令人满意的结果,这强调了对新的优化方法的需求。因此,本研究的主要目的是开发一种新的基于梯度的元启发式算法,即基于梯度的优化器(GBO)。最流行的基于梯度的搜索方法包括牛顿法[23],准牛顿法[24],原创 2023-04-05 10:01:43 · 134 阅读 · 0 评论 -
【改进的食虫植物算法】一种具有Lévy突变和相似性的改进食虫植物算法及其应用(Matlab代码实现)
本文为一种改进的食虫植物算法:一种具有Lévy突变和相似性去除操作的食虫植物算法,详细文章讲解见参考文献。博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。部分理论来源于网络,如有侵权请联系删除。行百里者,半于九十。原创 2023-04-03 19:22:12 · 113 阅读 · 0 评论 -
光谱优化算法:一种新型物理启发的元启发式优化算法(Matlab代码实现)
属于这一类别的最流行的算法是基于教学的优化(TLBO)[42],和谐搜索(HS)[43],过去现在的未来(PPF)[44],政治优化器(PO)[45],头脑风暴优化(BSO)[46],交易所市场算法(EMA)[47],联赛冠军算法(LCA)[不幸的是,没有元启发式方法可以有效地解决所有类型的优化问题。]、空间引力算法 (SGA) [73]、离子运动算法 (IMA) [74]、类电磁算法 (EMA) [75]、平衡优化器 (EO) [76]、光线优化 (LRO) [77] 和阿基米德优化算法 (AOA) [原创 2023-04-03 15:28:08 · 545 阅读 · 0 评论 -
【多目标优化算法】ev-MOGA多目标进化算法(Matlab代码实现)
ev-MOGA多目标进化算法是一种基于ε优势概念的精英主义多目标进化算法。ev-MOGA试图在有限的内存资源下以智能分布式方式获得对帕累托阵线的良好近似。它还动态调整帕累托前线的极限。详细文章数学模型讲解见第4部分。博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。部分理论来源于网络,如有侵权请联系删除。行百里者,半于九十。原创 2023-03-29 14:05:32 · 240 阅读 · 0 评论 -
【改进优化算法】自适应反对粘菌优化算法(AOSMA)(Matlab代码实现)
最近,粘菌算法(SMA)在函数优化中变得流行,因为它有效地利用探索和利用来达到最优解或接近最优解。然而,SMA使用来自整个人口的两个随机搜索代理来决定未来来自最佳搜索代理的位移和方向,这限制了其开发和探索。为了解决这个问题,我们研究了一种自适应方法来决定是否使用基于对立的学习(OBL)。AOSMA的定性和定量分析使用IEEE CEC 29测试套件中的23个测试函数(包括6个经典测试函数和2014个最近使用的组成函数)进行报告。本文提出的结果表明,AOSMA的性能优于其他优化算法。行百里者,半于九十。原创 2023-03-28 14:13:29 · 139 阅读 · 0 评论 -
【单目标优化算法】胡桃夹子鸟优化算法 (NOA)(Matlab代码实现)
胡桃夹子表现出两种不同的行为,发生在不同的时期。本文提出NOA来模拟这些不同的行为,以提出一种新的,具有不同本地和全局搜索运算符的鲁棒元启发式算法,使其能够以更好的结果解决各种优化问题。NOA与三类现有优化算法进行了比较:(2)SMA,GBO,EO,RUN,AVOA,RFO和GTO作为最近发布的算法,(3)SSA,WOA和GWO作为高引用算法,以及(2017)AL-SHADE,L-SHADE,LSHADE-cnEpSin和LSHADE-SPACMA作为高性能优化器和CEC竞赛的获胜者。行百里者,半于九十。原创 2023-03-28 11:06:36 · 435 阅读 · 0 评论 -
【多目标优化算法】多目标樽海鞘群算法(Matlab代码实现)
针对单目标和多目标优化问题,提出了两种新的优化算法Salp群算法(SSA)和多目标Salp群算法(MSSA)。在几个数学优化函数上对这两种算法进行了测试,观察并证实了它们在寻找优化问题最优解时的有效行为。结果表明,该算法能较好地逼近Pareto最优解,具有较高的收敛性和覆盖率。本文还考虑使用SSA和MSSA解决几个具有挑战性和计算昂贵的工程设计问题(例如翼型设计和船用螺旋桨设计)。实际案例研究的结果证明了所提出的算法在解决具有困难和未知搜索空间的实际问题时的优点。部分理论来源于网络,如有侵权请联系删除。原创 2023-03-25 21:07:22 · 238 阅读 · 0 评论 -
【改进算法】混合鲸鱼算法和灰狼优化算法(WOAGWO)(Matlab代码实现)
灰狼优化算法(GWO)是一种非常具有竞争力的算法,它在开发阶段具有优异的性能,并且在单峰基准函数上进行了测试。首先,在WOA开发阶段嵌入了GWO的寻优机制,并给出了与GWO相关的新条件;实验采用了三种不同的标准测试函数,称为基准函数:23个常用函数,25个CEC2005函数,10个CEC2019函数。结果表明,基于Wilcoxon秩和检验,WOAGWO算法的性能优于其他算法。结果表明,WOAGWO算法获得的最优解优于WOA算法和适应度相关优化器(FDO)。博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。原创 2023-03-06 11:10:05 · 472 阅读 · 2 评论 -
【改进算法】混合灰狼算法和粒子群优化算法【GWOPSO】(Matlab代码实现)
灰狼优化算法(GWO)模拟了自然界灰狼的领导和狩猎层级,在狼群中存在四种角色,α 狼负责领导是最具有智慧的在狩猎当中可以敏锐的知道猎物的位置,β 狼可以认为是军师比较具有智慧比较能知道猎物的位置,δ 狼负责协助前两个层级的狼,最后是ω 狼负责跟从。研究表明,GWO算法的整体寻优性能相比于遗传算法、粒子群算法以及人工蜂群算法等更具优势。GWO算法采用随机方法构建初始解,这在一定程度上限制了算法的搜索效率;同时,该算法仅以优质解引导种群进化,这使得搜索过程易陷入局部最优。行百里者,半于九十。原创 2023-03-05 16:48:47 · 660 阅读 · 0 评论 -
【改进鲸鱼优化算法】增强型鲸鱼优化算法(Matlab代码实现)
(WOA) 是一个突出的问题解决器,广泛用于解决特征选择等 NP 难题。然而,它及其大多数变体都受到人口多样性低和搜索策略不佳的影响。为了减轻 WOA 的这些核心缺点,特别是为了处理功能选择问题,非常需要引入有效的策略。因此,本文致力于提出一种基于池化机制和2019种有效搜索策略的增强型鲸鱼优化算法E-WOA,分别是迁徙、优先选择和富集包围猎物。评估 E-WOA 的性能并与众所周知的 WOA 变体进行比较,以解决全局。获得的结果证明,E-WOA的性能优于WOA的变体。行百里者,半于九十。原创 2023-03-01 19:58:28 · 411 阅读 · 0 评论 -
改进的状态转换算法 (STA)(Matlab代码实现)
如前所述,在连续STA中,有四个状态变换算子,每个变换算子都有一定的几何意义,即每个变换算子形成的邻域具有一定的几何特征。各种状态变换运算符,例如连续 STA 中的旋转、平移、扩展和轴,或离散 STA 中的交换、移位、对称和替换,都是专门为全局和局部搜索而设计的。相反,后者是在过程中更新参数值,更新机制的类型可以是确定性的、自适应的或自适应的(详情请参考 [例如,遗传算法中的交叉和突变概率[23],粒子群优化中的惯性权重和加速度因子[24],[25],差分进化中的放大因子和交叉率[26]-原创 2023-02-26 19:56:39 · 225 阅读 · 0 评论 -
【改进灰狼优化算法】改进收敛因子和比例权重的灰狼优化算法【期刊论文完美复现】(Matlab代码实现)
摘要:在分析灰狼优化算法不足的基础上,提出一种改进的灰狼优化算法(CGWO),该算法采用基于余弦规律变化的收敛因子,平衡算法的全局搜索和局部搜索能力,同时引入基于步长欧氏距离的比例权重更新灰狼位置,从而加快算法的收敛速度。最后以预测谷氨酸菌体生长浓度为例,利用CGWO算法估计Richards模型的参数,以均方根误差和平均绝对误差作为评价指标,与PSO算法、GA算法和VS-FOA算法的结果进行比较,CGWO算法可以有效地估计Richards模型中的参数。%% 改进点:收敛因子改进,文献中式(7)原创 2023-02-20 22:26:36 · 254 阅读 · 2 评论 -
【单目标优化算法】社交蜘蛛优化算法(Matlab代码实现)
已经提出了由此类模型产生的几种算法来解决各种复杂的优化问题。该文提出一种新型群体算法社交蜘蛛优化(SSO)求解优化任务。在所提出的算法中,个体模拟一组蜘蛛,这些蜘蛛根据合作群体的生物学规律相互交互。该算法考虑两种不同的搜索代理(蜘蛛):雄性和雌性。根据性别的不同,每个个体都由一组不同的进化操作员进行,这些操作员模仿通常在殖民地中发现的不同合作行为。为了说明所提出的方法的熟练性和稳健性,将其与其他众所周知的进化方法进行了比较。结果表明,所提出的方法在搜索具有多个基准函数的全局最优值时具有高性能。原创 2023-02-14 09:49:07 · 222 阅读 · 0 评论 -
【多目标优化算法】多目标蚱蜢优化算法(Matlab代码实现)
然后,将存档和目标选择技术集成到算法中,以估计多目标问题的帕累托最优前沿。结果表明,在获得的帕累托最优解及其分布的准确性方面,所提出的算法能够提供非常有竞争力的结果。在优化领域,1977年,霍兰德提出了一个革命性的想法,在计算机中模拟自然界的进化概念,以解决优化问题[1]就在那一刻,最著名的启发式算法——遗传算法(GA)[2]应运而生,并为解决不同研究领域中的挑战性和复杂问题开辟了一条新途径。在遗传算法中,选择概率较高的最适者,以类似于自然界的方式参与创造下一个种群。GA算法的一般思想非常简单。原创 2023-02-12 11:49:34 · 167 阅读 · 0 评论 -
【单目标优化算法】孔雀优化算法(Matlab代码实现)
博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。部分理论来源于网络,如有侵权请联系删除。行百里者,半于九十。原创 2023-02-10 23:29:12 · 146 阅读 · 0 评论 -
【改进粒子群优化算法】增强型二元粒子群优化 (BPSO)算法【具有 6 个新的传递函数】(Matlab代码实现)
该算法的二进制版本已被引入以解决二进制问题。二进制版本的主要部分是一个传递函数,它负责将连续搜索空间映射到离散搜索空间。目前,文献中似乎对传递函数的关注不够,尽管它显然很重要。在这项研究中,引入并评估了分为S形和V形两个族的六个新传递函数。CEC 2005特别会议提供的个基准优化函数用于评估这些传递函数,并在避免局部最小值和收敛速度方面选择最佳函数。为了验证最佳传递函数的性能,本文还对BPSO进行了六种最新修改的比较研究。结果表明,新引入的V形传递函数族显著提高了原二进制PSO的性能。原创 2023-02-07 10:36:23 · 478 阅读 · 1 评论 -
【单目标优化算法】杂草优化算法(Matlab代码实现)
其中,Fx代表当前解的适应度,Fmin代表当前种群中所有解的最小适应度,Fmax代表代表当前种群中所有解的最大适应度。对应到最优解搜索问题中,接近最优解的解具有更强的适应度,会产生更多的子代个体(下一代的解)。远离最优解的解具有较低适应度,会产生较少的下一代个体。(当搜索最小值的时候,函数值最小的解适应度最大)随机生成一定数量的初始解(杂草),这些初始解(杂草)随机地均匀地分布在搜索空间(草原)内。现实世界中,不同杂草在草原上的适应度不同,适应度高的个体生长旺盛,将会产生更多的子代种子。原创 2023-02-06 17:02:06 · 162 阅读 · 0 评论 -
【单目标优化算法】沙猫群优化算法(Matlab代码实现)
该算法以平衡的方式控制勘探和开发阶段的过渡,在以较少的参数和操作找到良好的解决方案方面表现良好。启发式算法和元启发式算法都是近似算法的家族,不能保证找到最优解,但得到的解可能更接近最优解,复杂度和实际执行时间更好。元启发式方法不会落入局部陷阱,此外,它们更加灵活,并试图通过简单的实施在更短的时间内以更少的流程成本在全球搜索领域找到最佳解决方案。作者纠正了这两种算法的缺点,并因此证明了他们提出的方法具有快速的收敛速度和强大的全局搜索能力,并且在寻找解决方案方面是准确的。ACO算法模拟蚂蚁的觅食行为。原创 2023-02-05 21:38:19 · 245 阅读 · 0 评论