今天在使用夜间灯光的时候,发现常用的两个夜间灯光数据DMSP(1992-2014)和VIRRS(2012-),两个数据集可获取时间不一致,实际导出之后也存在很大偏差,如果想要进行驱动分析,会产生很大的误差,不能直接使用。
但是最近发现了,全球500米分辨率“类NPP-VIIRS”夜间灯光数据集,有效地校准了这两个数据,这个数据集的介绍文章A harmonized global nighttime light dataset 1992–2018 | Scientific Data (nature.com),并且数据也完全开源,时间为1992-2018,下载地址https://figshare.com/articles/dataset/Harmonization_of_DMSP_and_VIIRS_nighttime_light_data_from_1992-2018_at_the_global_scale/9828827/5
数据介绍翻译:
国防气象卫星计划(DMSP)/业务线扫描系统(OLS)和苏米国家极轨伙伴关系卫星上的可见红外成像辐射计套件(VIIRS)提供的夜光(NTL)数据为监测从区域到全球范围的人类活动提供了巨大的机会。尽管 DMSP(1992-2013 年)和 VIIRS(2012-2018 年)提供了宝贵的夜景记录,但由于 DMSP 和 VIIRS 严重不一致,NTL 观测历史档案的潜力尚未得到充分挖掘。在本研究中,我们通过协调来自 DMSP 数据的相互校准的 NTL 观测数据和来自 VIIRS 数据的模拟 DMSP 样 NTL 观测数据,生成了全球尺度的综合一致的 NTL 数据集。生成的全球 DMSP NTL 时间序列数据(1992-2018 年)显示出一致的时间趋势。这一经过时间扩展的 DMSP NTL 数据集为与人类活动(如电力消费和城市范围动态)有关的各种研究提供了宝贵的支持。
下载链接:Harmonization of DMSP and VIIRS nighttime light data from 1992-2020 at the global scale (figshare.com)https://figshare.com/articles/dataset/Harmonization_of_DMSP_and_VIIRS_nighttime_light_data_from_1992-2018_at_the_global_scale/9828827/5引用:Li, Xuecao, Yuyu Zhou, Min Zhao, and Xia Zhao. "A harmonized global nighttime light dataset 1992–2018." Scientific data 7, no. 1 (2020): 1-9.
另外还有另一个数据集,这是文章https://www.mdpi.com/2072-4292/12/6/937;研究提出了一种基于自编码器(Auto-encoder, AE)模型的跨传感器校正方案。自编码器包含编码和解码两个过程,其中编码是将图像压缩成抽象特征,而解码则是将抽象特征复原成原始图像。研究中对自编码器进行了改动,将2013年的EANTLI数据作为输入数据,而输出数据的验证集则为同年份的NPP-VIIRS年合成夜间灯光数据(Composited NPP-VIIRS NTL Data),如文档图2所示。迭代训练后,依次将2000年至2012年的EANTLI输入至训练后的模型中,从而获得各自年份的“类NPP-VIIRS”数据(NPP-VIIRS-like NTL Data),该数据集具有同NPP-VIIRS夜间灯光数据一致的参数属性(详细参数见文末表格);此外,将2013-2020间逐年份的NPP-VIIRS年合成夜间灯光数据直接附加在2000-2012年“类NPP-VIIRS”夜间灯光数据之后即可获得完整的长时序(2000-2022)新夜间灯光数据集(Extended NPP-VIIRS-like NTL Data),下载地址国家地球系统科学数据中心数据详细信息 (geodata.cn)