如果该数据集中存在缺失值,可以使用Pandas库中的fillna()函数进行填充。常用的填充方法包括均值、中位数、众数等。假设将缺失值用均值进行填充,可以按照以下方式进行:
import pandas as pd
# 假设数据已经读入到DataFrame对象df中
df = pd.read_csv('breast_cancer.csv')
# 检查是否存在缺失值
print(df.isnull().sum())
如果该数据集中存在缺失值,可以使用Pandas库中的fillna()函数进行填充。常用的填充方法包括均值、中位数、众数等。假设将缺失值用均值进行填充,可以按照以下方式进行:
import pandas as pd
# 假设数据已经读入到DataFrame对象df中
df = pd.read_csv('breast_cancer.csv')
# 检查是否存在缺失值
print(df.isnull().sum())