数据集缺失值预处理

文章介绍了如何使用Python的Pandas库来处理数据集中的缺失值,特别是通过fillna()函数用均值填充缺失值的方法。首先,通过isnull().sum()检查缺失值,然后使用fillna()结合mean()计算每一列的平均值并就地替换缺失值,从而完成数据预处理步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如果该数据集中存在缺失值,可以使用Pandas库中的fillna()函数进行填充。常用的填充方法包括均值、中位数、众数等。假设将缺失值用均值进行填充,可以按照以下方式进行:

import pandas as pd

# 假设数据已经读入到DataFrame对象df中
df = pd.read_csv('breast_cancer.csv')
# 检查是否存在缺失值
print(df.isnull().sum())
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值