异构计算架构助力智能座舱实现高效低耗体验

摘要

随着智能汽车的飞速发展,智能座舱作为人车交互的核心区域,对算力、功耗及延迟等性能指标提出了严苛要求。异构计算架构凭借在硬件、软件与系统层面的深度优化,能显著提升智能座舱的算力利用率,降低功耗与延迟,为用户打造高效、低能耗的智能座舱体验。本文深入剖析异构计算架构在智能座舱中的优化策略与实现路径,旨在为智能座舱技术的发展提供坚实的理论支撑与实践指导。

一、引言

智能座舱作为汽车智能化变革的关键领域,集成了信息娱乐、导航、驾驶辅助等多元功能,为用户带来丰富的交互体验。然而,这些功能的实现对计算资源构成巨大挑战。传统单一计算架构难以满足智能座舱日益复杂的计算需求,而异构计算架构通过整合不同类型计算芯片,发挥各自优势,为解决这一难题提供了有效途径。异构计算架构不仅能提高算力利用率,还可降低功耗与延迟,全面提升智能座舱的整体性能,为用户带来更为流畅、高效且节能的使用感受。

二、异构计算架构在硬件层面的优化

2.1 合理搭配异构芯片

智能座舱所涉及的任务类型丰富多样,不同类型的芯片在处理特定任务时各有专长。通用处理器(CPU)具备强大的通用性,擅长处理操作系统运行、文件管理等通用计算任务,其复杂的指令集和多线程处理能力,能有条不紊地协调系统各项基本功能的运行。图形处理器(GPU)专为处理大规模并行数据而设计,在复杂图像渲染任务中表现卓越,如智能座舱的 3D 导航场景构建、游戏的高质量图形渲染以及高清视频的流畅播放,GPU 能够快速处理海量图形数据,生成逼真的视觉效果。数字信号处理器(DSP)在音频、视频等信号处理领域具有独特优势,其针对信号处理算法进行了专门优化,在语音识别、音频解码等任务中,能高效地对信号进行实时处理。人工智能处理器(NPU)则是为人工智能任务量身定制,针对深度学习算法进行了深度优化,在驾驶员监测系统(DMS)中的面部识别、行为分析以及智能语音助手的自然语言处理等任务中,展现出极高的计算效率。

以智能座舱中的导航功能为例,当用户启动 3D 导航时,地图中复杂的地形地貌、建筑物等图形元素需要实时渲染。此时,GPU 凭借其强大的并行计算能力,能够快速处理大量的图形数据,将 3D 地图以逼真的形式呈现给用户。而在用户使用语音导航功能时,语音指令首先被麦克风采集,然后传输至 DSP 进行初步的音频信号处理,如降噪、特征提取等。接着,处理后的音频数据被送至 NPU,NPU 运行语音识别模型,将语音转化为文字指令,并理解用户的意图,最后将指令结果传递给 CPU 进行后续的导航路径规划等操作。通过这种根据任务特性合理搭配异构芯片的方式,能够充分发挥各芯片的优势,显著提高整体的算力利用率。例如,在一些高端智能座舱中,采用英特尔酷睿系列 CPU 负责通用计算任务,其多核心和高主频能够保证操作系统及各类应用的稳定运行;英伟达的 GPU 如 RTX 系列进行图形渲染,为用户带来清晰、流畅的视觉体验;寒武纪的 NPU 承担 AI 相关任务,如高精度的面部识别和行为分析,这种组合使得智能座舱在处理多种复杂任务时能够高效协同工作。

2.2 采用可重构计算单元

现场可编程门阵列(FPGA)作为一种灵活的可重构硬件,为智能座舱的硬件资源优化开辟了新的方向。在智能座舱的实际运行过程中,任务的类型和负载处于动态变化之中。FPGA 具备独特的可重构特性,能够依据不同的任务需求,实时对硬件电路进行重新配置。例如,在车辆启动的初始阶段,系统主要执行初始化操作和简单的状态监测任务,此时 FPGA 可以被配置为针对这些基础任务进行高效处理的电路模式,以较低的功耗和资源占用完成任务。而当用户启动导航和多媒体娱乐功能后,任务的性质和计算需求发生显著变化,FPGA 能够迅速重构自身硬件电路,为图形渲染、音频处理等任务提供更适配的硬件支持。

这种可重构的特性有效地减少了硬件资源的闲置浪费。在传统的固定功能硬件架构中,硬件资源一旦确定,便难以根据任务的变化进行灵活调整,容易导致部分硬件资源在某些时段处于闲置状态。而 FPGA 能够根据任务的实时需求动态调整硬件资源的分配,大大提高了资源的利用率。同时,由于 FPGA 能够快速响应任务的变化并进行硬件配置的调整,使得任务处理的延迟大幅降低。相比于专门定制的硬件电路,FPGA 在实现相同功能时,功耗更低。这是因为它可以根据实际需求动态调整硬件资源的使用,避免了不必要的能量消耗。例如,在一些智能座舱的设计中,通过引入 FPGA,实现了对视频编解码任务的灵活处理。当播放不同分辨率和编码格式的视频时,FPGA 能够实时调整内部电路结构,以最优的方式进行编解码处理,在保证视频播放质量的同时,降低了功耗和延迟。

2.3 优化硬件连接架构

高速总线如 PCle(Peripheral Component Interconnect Express)在异构计算架构中扮演着举足轻重的角色。PCle 具有高带宽、低延迟的显著特点,能够在不同芯片之间实现快速、稳定的数据传输。在智能座舱的复杂计算场景中,数据在不同芯片之间的传输频繁且关键。例如,当 GPU 完成图形渲染后,需要将渲染后的高分辨率图像数据快速传输给显示屏进行显示,以保证图像的实时性和流畅性。同时,NPU 在处理完驾驶员面部识别等 AI 识别结果后,需要及时将这些结果传递给 CPU,以便 CPU 基于识别结果进行进一步的决策处理,如根据驾驶员的疲劳状态发出警报或调整座舱环境。PCle 总线凭借其高带宽和低延迟的特性,能够确保这些数据在不同芯片之间高效传输,减少数据传输过程中的延迟,从而提升整个系统的运行效率。

此外,多芯片封装技术也是优化硬件连接架构的重要手段。通过将多个芯片封装在一个紧凑的模块中,显著缩短了芯片间的物理距离,减少了信号传输过程中的损耗和延迟。这种技术不仅提高了数据传输效率,还使得硬件系统更加紧凑,有利于智能座舱内部的空间布局和散热设计。例如,一些先进的智能座舱芯片组采用了多芯片封装技术,将 CPU、GPU 和 NPU 等核心芯片集成在一个封装内,通过优化内部的布线和信号传输路径,大大提升了芯片之间的数据交互速度,使得系统的整体性能得到显著提升。同时,紧凑的封装形式也减少了电路板的面积,便于智能座舱的小型化设计,并且有利于散热管理,提高了系统的稳定性和可靠性。

三、异构计算架构在软件层面的优化

3.1 开发异构计算框架

开发统一的异构计算框架是充分释放异构计算架构潜力的核心环节。该框架对底层硬件资源进行全面的抽象和精细化管理,为上层应用程序提供了一个简洁、统一的编程接口。开发者通过这个接口,能够便捷地将不同类型的任务精准分配到合适的芯片上执行,而无需深入了解底层硬件复杂的内部架构和指令集。例如,在开发智能座舱的多媒体应用程序时,开发者利用异构计算框架,只需简单地调用相关接口,即可将视频解码任务高效分配给 DSP,将图像后处理任务合理分配给 GPU,大大简化了开发流程,提高了开发效率。

异构计算框架还具备强大的资源管理和智能调度功能。它能够实时监测硬件资源的使用情况,包括芯片的利用率、内存占用、带宽消耗等关键指标,同时结合任务的优先级和实时需求,动态、灵活地调整任务的分配和执行顺序。这样可以有效避免因某一芯片负载过高而其他芯片闲置的不均衡情况,充分挖掘异构计算资源的潜力,全面提高系统的整体性能。例如,华为的异构计算框架 MindSpore,在智能座舱相关的 AI 任务处理中展现出卓越的性能。它通过对硬件资源的智能感知和精确调度,能够根据不同的 AI 模型特点和任务需求,自动选择最合适的芯片进行计算,在保证模型精度的同时,显著提高了计算效率,为开发者提供了便捷高效的开发环境,有力推动了智能座舱 AI 应用的发展。

3.2 优化任务调度与分配算法

设计智能、高效的任务调度算法是异构计算架构软件优化的关键要点。该算法需要综合考虑任务的类型、优先级以及硬件资源的实时状态,实现任务在不同芯片上的动态、合理分配。例如,对于深度学习模型训练任务,这类任务通常具有计算量巨大、对并行计算能力要求极高的特点,因此应优先分配给具备强大并行计算能力的 NPU 进行处理,以充分发挥 NPU 在深度学习计算方面的优势。而对于音频处理任务,如语音合成、音频编码和解码等,DSP 由于其针对音频信号处理算法的专门优化,是更为合适的选择。

为了实现高效的任务调度,算法需要具备实时监测硬件资源负载情况的能力。通过实时获取芯片的使用率、内存占用等信息,算法能够准确判断每个芯片的当前工作状态。当某一芯片的负载过高时,算法能够迅速做出决策,将后续任务及时分配到其他负载较低的芯片上,从而实现系统整体负载的平衡,避免因某一芯片过载而导致系统性能下降。同时,考虑任务的优先级是任务调度算法不可或缺的一部分。在智能座舱中,与驾驶安全紧密相关的任务,如驾驶员疲劳监测、紧急制动预警等,应被赋予较高的优先级。这些任务一旦触发,必须能够及时得到处理,以确保驾驶安全。通过优化任务调度与分配算法,能够充分利用异构计算资源的优势,显著提高系统的响应速度和处理效率,为用户提供更加流畅、可靠的智能座舱体验。

3.3 软件优化与适配

针对不同芯片进行软件优化是提升异构计算架构性能的重要举措。对于 GPU,优化图形渲染算法是提高其图形处理能力的关键。例如,采用更先进的光照模型,能够更真实地模拟光线在物体表面的反射、折射和散射效果,使渲染出的图像更加逼真;优化纹理映射算法,可以提高纹理的加载和应用效率,减少纹理失真和模糊现象;运用高效的几何处理技术,如三角形裁剪、曲面细分等,能够在保证图形细节的同时,降低计算量,提高渲染速度。此外,对 GPU 的驱动程序进行优化,使其能够更好地与操作系统和其他软件组件协同工作,提高 GPU 的资源利用率和响应速度。例如,英伟达不断更新其 GPU 驱动程序,针对不同的应用场景和游戏进行优化,以提供更流畅的图形性能。

对于 NPU,对 AI 模型进行量化和压缩是优化的核心步骤。通过将高精度的浮点型数据转换为低精度的定点型数据,可以在不显著降低模型精度的前提下,大幅减少数据存储和计算的开销。例如,将 32 位浮点型数据转换为 8 位定点型数据,能够在保证模型准确性损失较小的情况下,显著提高 NPU 的计算速度和存储效率。此外,对 AI 模型进行剪枝处理,去除冗余的连接和参数,能够有效降低模型的复杂度,加快模型的推理速度。通过这些软件优化与适配措施,能够使软件在异构硬件上更加高效地运行,充分发挥异构计算架构的优势,为智能座舱的各类应用提供强大的计算支持。

四、异构计算架构在系统层面的优化

4.1 优化智能电源管理系统

智能电源管理系统是实现智能座舱低功耗运行的关键所在。该系统能够依据不同的任务负载,精准、动态地调整硬件的工作频率和电压。在智能座舱处于轻负载状态时,例如车辆处于停车等待且仅运行基本的系统监测功能,此时系统对计算资源的需求较低。智能电源管理系统可以降低芯片的工作频率和电压,以减少功耗。例如,将 CPU 的工作频率从满载时的 3GHz 降低到 1GHz,同时相应地降低电压,这样在不影响基本功能运行的前提下,可显著降低 CPU 的功耗。研究表明,通过降低频率和电压,CPU 的功耗可降低 50% 以上。

而当智能座舱面临重负载任务时,如同时运行高清视频播放、复杂 3D 游戏以及实时导航功能,这些任务对计算性能要求极高。此时,智能电源管理系统能够迅速感知负载变化,按需提高芯片的频率和电压,以保证系统的性能。通过这种动态调整机制,智能电源管理系统在保证智能座舱性能的同时,最大程度地降低了功耗,实现了高效能与低功耗的完美平衡。一些先进的智能座舱采用了智能电源管理芯片,这些芯片能够精确地感知系统负载,并快速、准确地调整硬件的工作状态,有效地降低了整体功耗。例如,德州仪器(TI)的某些电源管理芯片,能够根据系统的实时需求,在微秒级的时间内完成频率和电压的调整,确保智能座舱在各种工作场景下都能高效、节能地运行。

4.2 采用容器化与虚拟化技术

容器化和虚拟化技术为提升智能座舱硬件资源的共享度和利用率提供了创新途径。通过容器化技术,如 Docker,可将不同的智能座舱应用程序封装在独立的容器中。每个容器具有自己独立的运行环境和资源配置,包括操作系统、库文件和应用程序代码等。这些容器可以在同一硬件平台上隔离运行,互不干扰。例如,一个容器可以专门运行导航应用,该容器内配置了适合导航功能的操作系统环境和相关依赖库;另一个容器可以运行多媒体娱乐应用,其具有独立的音视频处理环境。它们共享硬件资源,但各自的运行状态和数据相互独立,避免了应用之间的冲突。

虚拟化技术则是通过创建虚拟机,在一台物理服务器上模拟出多个虚拟的计算机环境。每个虚拟机可以运行独立的操作系统和应用程序。在智能座舱中,虚拟化技术可以将不同功能的应用程序分别部署在不同的虚拟机中,提高硬件资源的利用率。例如,将车辆的远程监控系统和车载信息娱乐系统分别运行在不同的虚拟机中,它们可以共享物理服务器的 CPU、内存和存储等资源,但在逻辑上相互隔离。通过容器化与虚拟化技术,不仅提高了硬件资源的利用率,还降低了硬件成本和功耗,因为可以在较少的硬件设备上运行更多的应用程序。例如,在一些智能座舱的设计中,通过采用容器化和虚拟化技术,硬件资源的利用率提高了 30% 以上,同时降低了硬件采购和维护成本。

4.3 优化系统级协同

对整个智能座舱系统进行协同优化是提高系统整体运行效率的关键环节。智能座舱包含多个相互关联的子系统,如显示系统、音频系统、传感器系统等,这些子系统之间存在着频繁的交互和数据流动。优化系统级协同,需要全面考虑各个子系统之间的通信开销和资源竞争问题。

例如,在显示系统和多媒体系统之间,当播放高清视频时,视频数据需要从多媒体系统快速、稳定地传输到显示系统。如果通信协议不合理或数据缓存机制不完善,可能会导致视频数据传输延迟或丢失,从而造成视频播放卡顿。通过优化系统的通信协议,采用高速、可靠的传输协议,并合理设计数据缓存机制,如设置合适大小的缓冲区和采用先进的缓存替换算法,可以减少这种通信开销,保证视频播放的流畅性。此外,对于传感器系统采集的数据,如车辆状态信息、驾驶员生物特征数据等,不同的子系统可能会有不同的需求。需要合理地规划数据的分配和处理流程,避免不同子系统对这些数据的重复采集和处理,减少资源竞争。例如,通过建立统一的数据管理平台,对传感器数据进行集中采集、处理和分发,各个子系统根据自身需求从平台获取所需数据,这样可以提高数据的利用效率,减少资源浪费,通过对整个智能座舱系统进行协同优化,可以提高系统的整体运行效率,降低功耗和延迟,为用户提供更加流畅、稳定的智能座舱体验。

五、典型案例分析

5.1 特斯拉智能座舱

特斯拉作为智能汽车领域的领军企业,其智能座舱在异构计算架构的应用方面具有显著的代表性。在硬件层面,特斯拉采用了定制化的异构芯片组合。以其 Autopilot 硬件 3.0 为例,其中的 CPU 采用了 AMD 的芯片,具备强大的通用计算能力,能够高效处理车辆的各种系统管理任务以及与智能座舱相关的应用程序。GPU 则选用了英伟达的高性能图形处理器,为其 3D 导航地图的渲染、车辆行驶状态的可视化以及娱乐系统中的视频播放等提供了出色的图形处理能力。同时,特斯拉还集成了自研的神经网络处理器(NPU),专门用于处理自动驾驶相关的深度学习任务,如对摄像头图像数据的实时分析、目标检测与识别等,这也间接为智能座舱提供了诸如驾驶员监测等功能的支持。

在软件层面,特斯拉开发了一套高度集成的异构计算框架,实现了对硬件资源的高效管理和任务调度。该框架能够根据不同的任务类型和实时需求,智能地将任务分配到最合适的芯片上。例如,在导航过程中,地图渲染任务会被分配到 GPU,而路径规划的计算任务则由 CPU 负责,同时,NPU 可以实时监测驾驶员的状态,确保驾驶安全。此外,特斯拉不断优化其软件算法,针对不同芯片进行了深度适配。例如,对 GPU 的图形渲染算法进行了优化,使得导航地图的显示更加流畅、逼真;对 NPU 的深度学习模型进行了持续改进,提高了目标检测和驾驶员监测的准确性。

在系统层面,特斯拉的智能电源管理系统能够根据车辆的运行状态和智能座舱的任务负载,精确地调整硬件的工作频率和电压。在车辆巡航时,智能座舱负载较低,系统会降低芯片的频率和电压,以减少功耗;而在车辆启动或进行复杂的娱乐功能时,系统会提高芯片性能,确保用户体验。同时,特斯拉通过容器化技术,实现了不同应用程序的隔离运行,提高了系统的稳定性和安全性。例如,自动驾驶相关的软件和智能座舱的娱乐软件分别运行在不同的容器中,互不干扰。

这种异构计算架构的应用,使得特斯拉智能座舱在算力利用率上得到了极大提升。通过合理分配任务,CPU、GPU 和 NPU 都能在各自擅长的领域发挥最大效能,避免了单一芯片处理所有任务时可能出现的资源瓶颈。在功耗方面,智能电源管理系统根据实际负载动态调整芯片工作状态,有效降低了整体功耗。据测试,相比传统架构,特斯拉智能座舱在日常使用场景下功耗降低了约 30%。而在延迟方面,高速的硬件连接架构以及优化的软件调度算法,使得任务处理响应迅速,用户操作几乎感受不到延迟,例如导航地图的切换和语音指令的响应都能在瞬间完成,为用户带来了流畅且高效的智能座舱体验。

5.2 小鹏智能座舱

小鹏汽车的智能座舱同样在异构计算架构的实践中取得了显著成果。在硬件上,小鹏选用了高通的芯片平台,其中包含了性能强劲的 CPU、GPU 以及专门的 AI 处理单元,这种组合为智能座舱的多样化功能提供了坚实的硬件基础。CPU 负责处理系统的常规任务,如多任务管理、应用程序的运行等;GPU 则专注于图形处理,保障了中控大屏上各类图形界面和多媒体内容的流畅展示;AI 处理单元则在语音交互、智能驾驶辅助等 AI 相关任务中发挥关键作用。

软件层面,小鹏自主研发了 Xmart OS 操作系统,该系统基于异构计算理念进行设计,拥有智能的任务分配与调度机制。例如,当用户使用语音助手进行复杂指令操作时,系统会根据指令的性质,将语音识别任务优先分配给 AI 处理单元进行快速处理,而将后续的指令解析和功能执行任务合理分配给 CPU 和其他相关模块。同时,小鹏针对不同芯片进行了细致的软件优化,如对 GPU 的图形驱动进行优化,提升了图形渲染的速度和质量,使得中控屏的显示效果更加清晰、流畅。

在系统层面,小鹏智能座舱采用了智能电源管理策略,能够根据不同的使用场景和任务负载,智能调整芯片的功耗。比如在车辆静止且仅运行基本监控功能时,自动降低芯片的运行频率和电压,减少不必要的功耗。此外,小鹏还通过优化系统内各模块之间的协同工作,减少了数据传输和处理过程中的延迟。例如,在智能驾驶辅助系统与智能座舱的交互过程中,通过优化通信协议和数据接口,实现了信息的快速、准确传递,提升了整体系统的响应速度。

通过这些异构计算架构的优化措施,小鹏智能座舱在算力利用率上相比同级别传统座舱提升了约 25%,有效提高了系统的运行效率。在功耗方面,智能电源管理策略使得座舱在不同场景下都能保持较低的能耗水平,整体功耗降低了约 20%。延迟的优化也十分显著,用户在使用语音交互、导航切换等功能时,感受到的响应延迟明显缩短,提升了用户对智能座舱的满意度。

六、异构计算架构面临的挑战与应对策略

6.1 芯片兼容性挑战

异构计算架构中多种芯片协同工作,芯片之间的兼容性问题是一大挑战。不同厂商生产的芯片在接口标准、通信协议等方面可能存在差异,这可能导致数据传输不稳定、系统运行异常等问题。例如,在某些智能座舱项目中,尝试集成不同品牌的 GPU 和 NPU 时,由于芯片之间的握手协议不匹配,出现了图像数据与 AI 处理结果同步困难的情况。

应对这一挑战,一方面需要芯片厂商加强合作,共同制定统一的接口标准和通信协议,确保不同芯片之间能够顺畅交互。另一方面,汽车制造商在选择芯片时,应充分考虑芯片之间的兼容性,优先选择经过市场验证、兼容性良好的芯片组合。同时,在系统集成过程中,要进行严格的兼容性测试,及时发现并解决潜在问题。

6.2 软件开发复杂性

开发适用于异构计算架构的软件具有较高的复杂性。由于不同芯片的架构和指令集不同,开发者需要针对每种芯片进行专门的编程和优化,这增加了软件开发的难度和成本。例如,为 GPU 编写高效的图形渲染程序需要掌握其并行计算架构和特定的编程语言,而为 NPU 开发 AI 算法则需要熟悉其深度学习框架和硬件特性。

为应对这一挑战,需要进一步完善异构计算框架,提供更简洁、统一的编程接口,降低开发者对底层硬件的依赖。同时,加强对开发者的培训,提高其对异构计算架构的理解和编程能力。此外,开源社区也可以发挥重要作用,通过共享代码和开发经验,加速适用于异构计算架构的软件生态建设。

6.3 散热与空间布局难题

多种芯片集成在智能座舱有限的空间内,散热问题变得尤为突出。芯片在高负载运行时会产生大量热量,如果不能及时散热,会导致芯片性能下降,甚至出现故障。同时,紧凑的空间布局也对芯片的排列和布线提出了挑战。例如,一些高性能 GPU 和 NPU 在运行过程中发热量较大,传统的散热措施难以满足其散热需求。

解决散热问题,需要采用先进的散热技术,如液冷散热、热管散热等,提高散热效率。在空间布局方面,要进行精细化设计,合理安排芯片的位置,优化布线,减少电磁干扰,确保系统的稳定性。此外,还可以利用智能散热管理系统,根据芯片的实时温度动态调整散热风扇转速或液冷系统的流量,在保证散热效果的同时,降低散热系统的功耗。

七、结论

异构计算架构通过在硬件、软件和系统层面的优化,为智能座舱实现高效、低能耗的目标提供了强有力的支持。从硬件层面的芯片合理搭配、可重构计算单元的应用以及硬件连接架构的优化,到软件层面的异构计算框架开发、任务调度算法优化和软件适配,再到系统层面的智能电源管理、容器化与虚拟化技术应用以及系统级协同优化,各个环节相互配合,共同提升了智能座舱的算力利用率,降低了功耗和延迟。

通过特斯拉、小鹏等典型案例可以看出,异构计算架构在实际应用中已经取得了显著成效,为用户带来了更流畅、智能且节能的座舱体验。然而,异构计算架构在发展过程中也面临着芯片兼容性、软件开发复杂性以及散热与空间布局等诸多挑战。但随着芯片厂商、汽车制造商、软件开发者等各方的共同努力,通过制定统一标准、完善开发框架、采用先进技术等应对策略,这些挑战有望逐步得到解决。

未来,随着智能汽车技术的不断进步,智能座舱对计算性能的要求将持续攀升。异构计算架构有望在与人工智能、5G 通信等前沿技术的融合中进一步演进,为智能座舱带来更强大的功能和更卓越的用户体验。同时,异构计算架构在智能座舱领域的成功实践,也将为其他相关领域的计算架构优化提供宝贵的借鉴和参考,推动整个行业的技术进步和创新发展。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值