计算机视觉之三维重建
文章平均质量分 94
冒冒菜菜
中国矿业大学人工智能专业!分享学习中的记录。
展开
-
计算机视觉之三维重建(7)---多视图几何(下)
1. 透视结构恢复问题:摄像机为透视相机,内外参数均未知。2. 问题:已知nnn个三维点XjX_jXj在mmm张图像中的对应点的像素坐标为xijx_{ij}xij,且xijMiXjxijMiXj,其中MiM_iMi为第iii张图片对应的摄像机投影矩阵,求解nnn个三维点XjX_jXj的坐标以及mmm个摄像机投影矩阵MiM_iMi。原创 2024-04-05 20:48:32 · 1295 阅读 · 0 评论 -
计算机视觉之三维重建(6)---多视图几何(上)
1. 欧式结构恢复问题:摄像机内参数已知,外参数未知情况。2. 对于欧式结构恢复问题,已知摄像机内参数,根据投影矩阵的计算公式可知xijMiXjKiRiTiXjxijMiXjKiRiTiXj。那么求解投影矩阵MMM只需要求解外参数RT[R,T]RT。1. 仿射结构恢复问题:摄像机为仿射相机,内外参数均未知。一般来说仿射相机代表为弱透视投影摄像机。2. 下面图中所有坐标使用欧式坐标,对于仿射变换而言zzz。原创 2024-04-03 19:42:21 · 1864 阅读 · 0 评论 -
计算机视觉之三维重建(5)---双目立体视觉
2. (1) 平行视图中的视差图:根据两台平行摄像机在不同角度观察同一物体或场景时,由于视角差异造成的图像的差异进而推断出物体的深度和距离,得到一幅信息图,可以用于对物体或场景的三维重建和识别。作为相关性标准,该方法可行依据在于,一般情况下一个图像上像素颜色或灰度的变化是平滑的,这样近似相同点平方的最大值的和在理论上大于高偏差点平方的最大值的和。对于较小的窗口:会引入更多的噪声,更容易受到噪声影响,但反之也会在没有噪声影响的地方提供更精确的信息。点一定在扫描线上,这样可以进一步缩小的检索范围。原创 2024-03-30 20:17:36 · 2616 阅读 · 0 评论 -
计算机视觉之三维重建(4)---三维重建基础与极几何
那么我们可以根据这两个式子,对于同一个点以及两个像平面点之间的对应关系,写出四个齐次方程,但是未知数只有三个,所以是一个超定齐次线性方程组,可以用齐次方程的最小二乘解来进行计算。2. 基础矩阵作用:基础矩阵中包含了摄像机内参数信息,所以给了基础矩阵,我们无需知道两个摄像机的内外参数就可以建立相同场景在不同视图的对应关系。通过极几何的约束,可以将搜索范围缩小到对应的极线上,而并没有做到对应点,所以存在一个方向上的误差问题。基础矩阵:对一般的透视摄像机拍摄的两个视点的图像间的极几何关系进行代数描述。原创 2024-03-27 00:54:25 · 1810 阅读 · 0 评论 -
计算机视觉之三维重建(3)---单视几何
个自由度,而一般我们只能找到三组互相垂直的平行线,如下图这种典型的三个平面互相垂直,在三个平面上选择三组平行线,那么最多只能得到三个方程,而三个方程不能精确的解出五个未知数,所以一般我们规定零倾斜,正方形像素,此时内参矩阵中的。对于透视和仿射变换而言,仿射变换后的无穷远点还是无穷远点,透视变换后的无穷远点不再是无穷远点。4. 同一平面直线(在2D平面上均为同一平面)的无穷远点均位于同一无穷远线上,我们定义无穷远线为。上,所以通过式子的代换得到了线与线之间变换是乘以一个变换矩阵的转置的逆的映射关系,即。原创 2024-03-23 00:47:15 · 1348 阅读 · 0 评论 -
计算机视觉之三维重建(2)---摄像机标定
1. 各个参数的最终公式如下所示:2. 我们要注意取点时不要取同一平面的点。原创 2024-03-20 21:04:34 · 1318 阅读 · 0 评论 -
计算机视觉之三维重建(1)---摄像机几何
这个平面的坐标原点一般设定在图像的中心,即主光轴与图像传感器的交点,以便更准确地描述图像的物理位置和关系,常常使用物理单位如毫米来描述像素在图像中的位置。具体来说,当物体上离相机较远的点P在胶片上成像时,如果物体上较近的点在胶片上映射到多个位置,那么就无法形成清晰的焦点,从而产生虚像。当光线经过透镜时,由于透镜的制造精度或组装工艺的偏差,光线在远离透镜中心的地方比靠近中心的地方更加弯曲,从而导致图像的失真。在没有建立用户坐标系之前,画面上所有点的坐标都是以该坐标系的原点来确定各自的位置的。原创 2024-03-18 20:40:52 · 1872 阅读 · 1 评论