昇思25天学习打卡营第1天|基本介绍与快速入门

昇思MindSpore基本介绍

昇思MindSpore是一个全场景深度学习框架,旨在实现易开发、高效执行、全场景统一部署三大目标。

其中,易开发表现为API友好、调试难度低;高效执行包括计算效率、数据预处理效率和分布式训练效率;全场景则指框架同时支持云、边缘以及端侧场景。

昇思MindSpore总体架构如下图所示:

MindSpore-arch

ModelZoo(模型库):提供可用的深度学习算法网络

MindSpore Extend(扩展库):支持拓展新领域场景,如GNN/深度概论编程/清华学习等

MindSpore Science(科学计算):是基于昇思MindSpore融合架构打造的科学计算行业套件,包含了业界领先的数据集、基础模型、预置高精度模型和前后处理工具,加速了科学行业应用开发

MindExpression(全场景统一API):基于Python的前端表达与编程接口,支持两个融合(函数/OOP编程范式融合、AI+数值计算表达融合)以及两个统一(动静表达统一、单机分布式表达统一)

第三方前端:支持第三方多语言前端表达,未来计划陆续提供C/C++等第三方前端的对接工作,引入更多的第三方生态

MindSpore Data(数据处理层):提供高效的数据处理、常用数据集加载等功能和编程接口,支持用户灵活地定义处理注册和pipeline并行优化

MindCompiler(AI编译器):图层的核心编译器,主要基于端云统一的MindIR实现三大功能,包括硬件无关的优化(类型推导、自动微分、表达式化简等)、硬件相关优化(自动并行、内存优化、图算融合、流水线执行等)、部署推理相关的优化(量化、剪枝等)

MindRT(全场景运行时):昇思MindSpore的运行时系统,包含云侧主机侧运行时系统、端侧以及更小IoT的轻量化运行时系统

MindSpore Insight(可视化调试调优工具):昇思MindSpore的可视化调试调优工具,能够可视化地查看训练过程、优化模型性能、调试精度问题、解释推理结果

MindSpore Armour(安全增强库):面向企业级运用时,安全与隐私保护相关增强功能,如对抗鲁棒性、模型安全测试、差分隐私训练、隐私泄露风险评估、数据漂移检测等技术

昇思MindSpore作为全场景AI框架,所支持的有端(手机与IOT设备)、边(基站与路由设备)、云(服务器)场景的不同系列硬件,包括昇腾系列产品、英伟达NVIDIA系列产品、Arm系列的高通骁龙、华为麒麟的芯片等系列产品。

由此,MindSpore可以视为是继主流的TensorFlow、PyTorch之后一个国产的优秀深度学习框架。

快速入门

本节实现了一个经典的深度学习案例——MINIST手写数据集的识别

导入必要的库函数

import mindspore
from mindspore import nn
from mindspore.dataset import vision, transforms
from mindspore.dataset import MnistDataset

 处理数据集

利用download完成数据集下载

# Download data from open datasets
from download import download

url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
      "notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)

MINIST数据集目录结构如下:

MNIST_Data
└── train
    ├── train-images-idx3-ubyte (60000个训练图片)
    ├── train-labels-idx1-ubyte (60000个训练标签)
└── test
    ├── t10k-images-idx3-ubyte (10000个测试图片)
    ├── t10k-labels-idx1-ubyte (10000个测试标签)

切分数据,获得训练集和测试集

train_dataset = MnistDataset('MNIST_Data/train')
test_dataset = MnistDataset('MNIST_Data/test')

MindSpore的dataset使用数据处理流水线(Data Processing Pipeline),需指定map、batch、shuffle等操作。这里我们使用map对图像数据及标签进行变换处理,然后将处理好的数据集打包为大小为64的batch。

def datapipe(dataset, batch_size):
    image_transforms = [
        vision.Rescale(1.0 / 255.0, 0),
        vision.Normalize(mean=(0.1307,), std=(0.3081,)),
        vision.HWC2CHW()
    ]
    label_transform = transforms.TypeCast(mindspore.int32)

    dataset = dataset.map(image_transforms, 'image')
    dataset = dataset.map(label_transform, 'label')
    dataset = dataset.batch(batch_size)
    return dataset
# Map vision transforms and batch dataset
train_dataset = datapipe(train_dataset, 64)
test_dataset = datapipe(test_dataset, 64)
for image, label in test_dataset.create_tuple_iterator():
    print(f"Shape of image [N, C, H, W]: {image.shape} {image.dtype}")
    print(f"Shape of label: {label.shape} {label.dtype}")
    break

输出结果为:

Shape of image [N, C, H, W]: (64, 1, 28, 28) Float32
Shape of label: (64,) Int32
for data in test_dataset.create_dict_iterator():
    print(f"Shape of image [N, C, H, W]: {data['image'].shape} {data['image'].dtype}")
    print(f"Shape of label: {data['label'].shape} {data['label'].dtype}")
    break

输出结果为:

Shape of image [N, C, H, W]: (64, 1, 28, 28) Float32
Shape of label: (64,) Int32

网络构建

# Define model
class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits

model = Network()
print(model)

得到网络模型参数:

Network<
  (flatten): Flatten<>
  (dense_relu_sequential): SequentialCell<
    (0): Dense<input_channels=784, output_channels=512, has_bias=True>
    (1): ReLU<>
    (2): Dense<input_channels=512, output_channels=512, has_bias=True>
    (3): ReLU<>
    (4): Dense<input_channels=512, output_channels=10, has_bias=True>
    >
  >

模型训练

在模型训练中,一个完整的训练过程(step)需要实现以下三步:

  1. 正向计算:模型预测结果(logits),并与正确标签(label)求预测损失(loss)。
  2. 反向传播:利用自动微分机制,自动求模型参数(parameters)对于loss的梯度(gradients)。
  3. 参数优化:将梯度更新到参数上
# Instantiate loss function and optimizer
loss_fn = nn.CrossEntropyLoss()
optimizer = nn.SGD(model.trainable_params(), 1e-2)

# 1. Define forward function
def forward_fn(data, label):
    logits = model(data)
    loss = loss_fn(logits, label)
    return loss, logits

# 2. Get gradient function
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)

# 3. Define function of one-step training
def train_step(data, label):
    (loss, _), grads = grad_fn(data, label)
    optimizer(grads)
    return loss

def train(model, dataset):
    size = dataset.get_dataset_size()
    model.set_train()
    for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
        loss = train_step(data, label)

        if batch % 100 == 0:
            loss, current = loss.asnumpy(), batch
            print(f"loss: {loss:>7f}  [{current:>3d}/{size:>3d}]")

除训练外,还须定义测试函数,用来评估模型性能

def test(model, dataset, loss_fn):
    num_batches = dataset.get_dataset_size()
    model.set_train(False)
    total, test_loss, correct = 0, 0, 0
    for data, label in dataset.create_tuple_iterator():
        pred = model(data)
        total += len(data)
        test_loss += loss_fn(pred, label).asnumpy()
        correct += (pred.argmax(1) == label).asnumpy().sum()
    test_loss /= num_batches
    correct /= total
    print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

迭代训练,损失值loss不断下降,准确率Accuracy不断提升

epochs = 3
for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train(model, train_dataset)
    test(model, test_dataset, loss_fn)
print("Done!")

输出结果为:

Epoch 1
-------------------------------
loss: 2.321781  [  0/938]
loss: 1.758574  [100/938]
loss: 0.886150  [200/938]
loss: 0.657408  [300/938]
loss: 0.504211  [400/938]
loss: 0.325501  [500/938]
loss: 0.370860  [600/938]
loss: 0.373897  [700/938]
loss: 0.339685  [800/938]
loss: 0.326273  [900/938]
Test: 
 Accuracy: 91.0%, Avg loss: 0.317380 

Epoch 2
-------------------------------
loss: 0.323128  [  0/938]
loss: 0.355488  [100/938]
loss: 0.269607  [200/938]
loss: 0.286821  [300/938]
loss: 0.159004  [400/938]
loss: 0.348837  [500/938]
loss: 0.248655  [600/938]
loss: 0.266517  [700/938]
loss: 0.215319  [800/938]
loss: 0.303118  [900/938]
Test: 
 Accuracy: 93.0%, Avg loss: 0.244984 

Epoch 3
-------------------------------
loss: 0.231084  [  0/938]
loss: 0.489510  [100/938]
loss: 0.263765  [200/938]
loss: 0.318094  [300/938]
loss: 0.216715  [400/938]
loss: 0.272948  [500/938]
loss: 0.158345  [600/938]
loss: 0.083921  [700/938]
loss: 0.128957  [800/938]
loss: 0.132207  [900/938]
Test: 
 Accuracy: 93.9%, Avg loss: 0.208416 

Done!

 保存模型

# Save checkpoint
mindspore.save_checkpoint(model, "model.ckpt")
print("Saved Model to model.ckpt")

于是得到后缀为.ckpt的模型文件

加载模型

# Instantiate a random initialized model
model = Network()
# Load checkpoint and load parameter to model
param_dict = mindspore.load_checkpoint("model.ckpt")
param_not_load, _ = mindspore.load_param_into_net(model, param_dict)
print(param_not_load)

param_not_load是未被加载的参数列表,为空时代表所有参数均加载成功。

加载模型直接可用于预测推理

model.set_train(False)
for data, label in test_dataset:
    pred = model(data)
    predicted = pred.argmax(1)
    print(f'Predicted: "{predicted[:10]}", Actual: "{label[:10]}"')
    break

输出结果为:

Predicted: "[2 9 9 4 3 7 0 6 6 9]", Actual: "[2 7 9 4 3 7 0 0 6 9]"

总结

这是入门MindSpore的第一天,作为一款国产的深度学习框架,它与主流的TensorFlow、Pytorch等有着相似的地方,包括但不限于诸多函数的命名和用法。但它可以很好地适配昇腾设备,我认为在不久的未来,MindSpore将成为边缘计算一股强大的力量。

  • 29
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值