- 博客(28)
- 问答 (1)
- 收藏
- 关注
原创 昇思25天学习打卡营第25天|基于MindSpore实现BERT对话情绪识别
模型概念:解释了BERT(Bidirectional Encoder Representations from Transformers)模型的基本概念和结构。创新点:强调了BERT在预训练阶段的创新方法,包括Masked Language Model(MLM)和Next Sentence Prediction(NSP)。应用场景:讨论了BERT在多种自然语言处理任务中的应用,以及情绪识别在智能对话系统的重要性。用户输入:允许用户输入自己的文本进行情绪预测,展示了模型的泛化能力。
2024-07-13 14:25:28 558
原创 昇思25天学习打卡营第24天|RNN实现情感分类
情感分析,又称为意见挖掘,是指使用自然语言处理、文本分析和计算语言学等方法来识别和提取文本中的主观信息。情感分析通常用于识别文本中的情感倾向,如积极、消极或中性。背景介绍情感分析的定义和重要性。应用场景示例。环境配置如何安装MindSpore及其依赖。配置开发环境。数据集介绍数据集的来源和特点。数据集的格式和结构。数据预处理文本清洗:去除无用信息,如HTML标签、特殊字符等。分词:将文本分割成单词或短语。构建词汇表:创建词汇表以供模型使用。
2024-07-12 22:52:45 372
原创 昇思25天学习打卡营第23天|LSTM+CRF序列标注
序列标注是自然语言处理中的一项任务,它涉及到对输入序列中的每个元素(Token)进行分类标注。常见的序列标注任务包括分词、词性标注和命名实体识别(NER)。例如,在NER中,模型需要识别文本中的地名、人名等实体。CRF通过以下公式定义序列y在给定输入序列x下的概率:其中,Score函数计算序列x和y的得分,包括发射概率和转移概率的贡献。
2024-07-11 22:07:19 526
原创 昇思25天学习打卡营第22天|Pix2Pix实现图像转换
生成器(Generator):通常包含多个卷积层、激活函数和上采样层,用于将输入图像转换为目标图像。判别器(Discriminator):通常包含多个卷积层和激活函数,用于区分真实图像和生成图像。
2024-07-10 22:01:54 202
原创 昇思25天学习打卡营第21天|GAN图像生成
整个教程是一个完整的GAN训练流程,从理论到实践,包括了模型设计、训练、评估和推理等各个环节。通过这个教程,读者可以学习到如何使用MindSpore框架来实现和训练一个GAN模型。
2024-07-09 21:36:11 304
原创 昇思25天学习打卡营第20天|Diffusion扩散模型
基本原理扩散模型是一种生成模型,它通过模拟数据的扩散过程(即逐步增加噪声)来生成新的数据样本。这个过程可以被看作是一个马尔可夫链,每一步都依赖于前一步的状态。正向过程(Forward Process)从数据的一个干净样本开始,模型逐步添加噪声,直到样本完全转化为噪声。这个过程通常由多个时间步骤组成,每个步骤都增加一定量的噪声。学习逆向过程(Learning the Reverse Process)模型需要学习如何逆转正向过程,即如何从噪声中恢复出原始的干净样本。
2024-07-09 00:19:40 275
原创 昇思25天学习打卡营第18天|CycleGAN图像风格迁移互换
模型简介:CycleGAN用于在没有成对图像的情况下学习图像从一个域转换到另一个域。这项技术在域迁移和图像风格迁移中非常有用。模型结构:CycleGAN由两个对称的生成对抗网络(GAN)组成,包括生成器和判别器。每个生成器将图像从一个风格转换到另一个,而判别器则区分真实图像和生成图像。
2024-07-06 23:16:01 232
原创 昇思25天学习打卡营第17天|基于MobileNetv2的垃圾分类
MobileNet网络使用深度可分离卷积思想,大大减小了模型参数与运算量,并引入宽度系数α和分辨率系数β以满足不同应用场景需求。本文档详细介绍了基于MobileNetV2的垃圾分类实验的全过程,包括数据处理、模型训练和推理等,为垃圾分类应用提供了一种有效的解决方案。本案例支持win_x86和Linux系统,CPU/GPU/Ascend均可运行,需正确安装MindSpore。主要介绍了基于MobileNetV2的垃圾分类实验,包括模型原理、实验环境、数据处理、模型训练和推理等内容。
2024-07-05 23:19:15 208
原创 昇思25天学习打卡营第16天|K近邻算法实现红酒聚类
KNN 是一种基于距离的分类和回归算法,通过计算测试样本与训练样本之间的距离来预测测试样本的类别。KNN 的三个基本要素:K 值、距离度量、分类决策规则。
2024-07-04 23:22:58 387
原创 昇思25天学习打卡营第15天|Vision Transformer图像分类
背景:Transformer模型最初用于处理序列数据,特别是在自然语言处理(NLP)领域取得了巨大成功。ViT将Transformer模型应用于图像分类任务。特点:ViT不依赖于卷积神经网络(CNN),而是使用自注意力机制处理图像数据。通过实际的代码示例,详细解释了ViT模型的构建、训练和推理过程。通过学习本教程,用户可以深入理解ViT模型的关键概念和原理,并能够在MindSpore框架下实现自己的图像分类任务。
2024-07-03 23:49:05 247
原创 昇思25天学习打卡营第14天|ShuffleNet图像分类
文件很可能包含了如何在MindSpore框架下实现和使用ShuffleNet模型的详细步骤和示例代码。:ShuffleNet旨在在保持高精度的同时减少模型大小和计算量,使其适合在资源受限的环境中使用。:ShuffleNet适用于需要快速推理的应用,如智能手机、嵌入式系统和其他资源受限的设备。:尽管ShuffleNet的参数数量较少,但它在图像分类任务上表现出与更大模型相当的性能。:MindSpore是一个开源的深度学习框架,支持ShuffleNet模型的实现和训练。
2024-07-02 23:28:43 179
原创 昇思25天学习打卡营第13天|SSD目标检测
SSD特点:SSD是一种单阶段目标检测算法,与两阶段方法(如RCNN系列)相比,它不需要生成候选区域再进行分类和回归,而是直接通过卷积神经网络(CNN)输出类别和位置信息。性能:使用Nvidia Titan X,在VOC 2007测试集上,SSD在300x300输入尺寸时达到74.3% mAP和59FPS,在512x512输入尺寸时达到76.9% mAP,超越了当时最强的Faster RCNN。
2024-07-02 01:14:32 293
原创 昇思25天学习打卡营第12天|ResNet50图像分类
ResNet-50是一个深度卷积神经网络,属于残差网络(Residual Networks,简称ResNets)家族中的一员。ResNet-50包含50层深度,其设计通过引入残差学习框架解决了深度网络训练中的退化问题。MindSpore是一个开源的深度学习框架,由华为诺亚方舟实验室开发,支持多种设备,包括CPU、GPU和华为Ascend AI处理器。MindSpore的设计理念是易于使用、灵活、高效。如果您需要更详细的内容或有其他具体问题,请提供更多的信息或上传文件,我将尽力为您提供帮助。
2024-06-30 23:36:44 150
原创 昇思25天学习打卡营第11天|ResNet50迁移学习
可能会包括一些预备知识,比如深度学习的基本概念,卷积神经网络(CNN)的结构,以及如何使用MindSpore框架进行基本操作。:教程可能会介绍如何选择预训练模型,这些模型已经在大量数据上训练过,可以作为迁移学习的基础。:详细说明如何使用MindSpore框架进行迁移学习,包括模型的微调、训练和评估。:教程中可能会提供代码示例,展示如何在MindSpore中实现迁移学习。:教程会解释迁移学习是什么,以及它在深度学习中的应用和重要性。:最后,教程可能会包括对模型性能的评估和结果的分析。
2024-06-29 23:00:40 217
原创 昇思25天学习打卡营第10天|FCN图像语义分割
这份教程为读者提供了一个全面的视角来理解FCN8s网络在图像语义分割中的应用,从理论到实践,包括代码实现和结果评估。
2024-06-29 02:14:27 221
原创 昇思25天学习打卡营第9天|使用静态图加速
AI编译框架运行模式:分为动态图和静态图两种模式。MindSpore默认模式:动态图模式,也称为PyNative模式,适合模型调试。
2024-06-27 22:56:19 306
原创 昇思25天学习打卡营第8天|保存与加载
MindSpore提供了灵活的模型保存与加载机制,支持模型权重的保存与加载,以及MindIR格式的导出与加载。通过这些功能,用户可以在训练过程中保存模型状态,并在需要时进行加载,便于模型的微调和部署。同时,MindIR格式的引入,使得模型在不同平台之间的转换更加方便。
2024-06-26 23:09:54 191
原创 vividime Desktop:企业数字化转型的得力助手
随着企业数字化转型的深入,数据驱动决策已成为企业实现可持续发展的关键。在这个过程中,一个强大且易于使用的数据分析工具无疑会起到举足轻重的作用。永洪科技的vividime Desktop就是这样一款数据分析工具,它凭借其卓越的性能和灵活的应用,成为企业数字化转型的得力助手。
2024-06-26 11:43:28 321
原创 昇思25天学习打卡营第7天|模型训练
继承nn.Cell类创建自定义网络Network。使用nn.Flatten层将图像从 HWC(高x宽x通道)格式转换为 CHW(通道x高x宽)格式。使用组织多个全连接层和ReLU激活函数。超参数:包括训练轮次(epochs)、批次大小(batch_size)和学习率(损失函数:使用来衡量预测值和真实标签之间的差异。优化器:使用SGD优化器,通过获取模型的可训练参数,并设置学习率。
2024-06-25 23:08:22 298
原创 昇思25天学习打卡营第6天 |函数式自动微分
MindSpore的自动微分功能主要基于反向传播算法,通过将复杂的数学运算分解为基本运算来实现梯度计算。这使得用户可以专注于模型构建而无需处理繁琐的求导细节。
2024-06-24 23:35:48 217
原创 昇思25天学习打卡营第5天 |网络构建
介绍了MindSpore框架的基本概念,如张量(Tensor)、数据集(Dataset)、数据变换(Transforms)、网络构建、函数式自动微分、模型训练、保存与加载,以及使用静态图加速等内容。:教程中提供了丰富的代码示例,包括如何实例化模型、如何构造输入数据、如何调用模型进行预测,以及如何获取模型的输出和预测类别。整个教程为初学者提供了一个清晰的入门指南,帮助他们理解如何在MindSpore框架中构建和使用神经网络模型。:以Mnist数据集分类任务为例,展示了如何构建一个简单的神经网络模型。
2024-06-23 21:32:39 320
原创 昇思25天学习打卡营第4天 |数据变换 Transforms
在深度学习中,原始数据通常需要经过预处理才能用于训练神经网络。MindSpore提供了多种数据变换操作,这些操作可以通过map方法应用到数据集上,以实现数据预处理。
2024-06-22 22:34:08 1704
原创 昇思25天学习打卡营第3天 | 数据集 Dataset
数据是深度学习的基础,MindSpore提供了基于Pipeline的数据引擎。通过模块,可以高效地进行数据预处理。对于MindSpore不支持的数据集,可以通过自定义数据加载类或生成函数来实现加载。可随机访问数据集:实现了和__len__方法的数据集,可以通过索引访问数据样本。可迭代数据集:实现了__iter__和__next__方法的数据集,适用于随机访问成本高或不可行的情况。生成器:依赖Python的生成器类型返回数据,直至抛出异常。
2024-06-21 20:21:24 227
原创 昇思25天学习打卡营第2天 | 张量 Tensor
定义:张量是一种多线性函数,用于表示矢量、标量和其他张量之间的线性关系。它是一个具有一定秩或阶的数据结构,类似于数组和矩阵。用途:在MindSpore中,张量是进行网络运算的基本数据结构。
2024-06-20 21:58:50 256
原创 昇思25天学习打卡营第1天 | 快速入门
学习MindSpore框架的快速入门教程后,我感受到了深度学习工具的强大与便捷。通过简洁的代码示例,MindSpore让我快速理解了从数据处理到模型构建、训练,再到保存和加载的整个流程。特别是其基于Pipeline的数据引擎和函数式自动微分机制,极大地提升了开发效率。此外,MindSpore对静态图的支持,使得模型运行更加高效,这对于追求高性能计算的我来说,是一大亮点。整体而言,这次学习经历不仅加深了我对深度学习框架的认识,也激发了我进一步探索和应用深度学习技术的兴趣。
2024-06-19 20:30:13 173
原创 Attention R2U-Net注意力时代的来临
Attention U-Net相较于传统的U-Net模型,具有更好的特征提取能力:Attention U-Net在编码器中使用了SE模块,可以自适应地学习每个通道的重要性权重,并将这些权重应用于特征图中的每个位置。
2023-09-05 10:16:00 1802 6
空空如也
关于#二维#的问题,如何解决?
2022-11-25
you-get出现audio-languages:
2019-11-20
TA创建的收藏夹 TA关注的收藏夹
TA关注的人