C++ n皇后问题

目录

n皇后问题

解析

改进


n皇后问题

n−皇后问题是指将 n个皇后放在 n×n 的国际象棋棋盘上,使得皇后不能相互攻击到,即任意两个皇后都不能处于同一行、同一列或同一斜线上。

现在给定整数 n,请你输出所有的满足条件的棋子摆法。

输入格式

共一行,包含整数 n。

输出格式

每个解决方案占 n 行,每行输出一个长度为 n 的字符串,用来表示完整的棋盘状态。

其中 . 表示某一个位置的方格状态为空,Q 表示某一个位置的方格上摆着皇后。

每个方案输出完成后,输出一个空行。

注意:行末不能有多余空格。

输出方案的顺序任意,只要不重复且没有遗漏即可。

数据范围

1≤n≤9

输入样例:

4

输出样例:

.Q..
...Q
Q...
..Q.

..Q.
Q...
...Q
.Q..

解析

对于每一个格子只有放与不放皇后两种选择,那么我们可以枚举每一个格子,那么时间复杂度O(2^n^2)

对角线问题,我们怎么判断枚举到的位置所在对角线是否已经有皇后了,借用一位大佬的图,如下:

 

代码如下(附注释):

#include <iostream>
using namespace std;
char s[10][10]; //存放每一种方案
int n; 
bool row[10],col[10],dg[20],udg[20]; //b = x + y, 所以对角线和反对角线开两倍
// u表示已经放上去的皇后个数
void dfs(int x, int y, int u) {
    if(y == n) y = 0 , x ++; //y到第n列的时候已经超出范围了,因为y的范围是0~n-1
    if(x == n) { // x==n说明已经枚举完n^2个位置了
        if(u == n) { // u==n说明成功放上去了n个皇后
            for(int i = 0 ; i < n; i ++) puts(s[i]);
            puts("");
        }
        return ; //输出方案后回溯
    }
    // 分支1:放皇后
    if(!row[x] && !col[y] && !dg[x + y] && !udg[x - y + n]) {
        s[x][y] = 'Q';
        row[x] = col[y] = dg[x + y] = udg[x - y + n] = true;
        //恢复现场
        dfs(x, y + 1, u + 1);
        row[x] = col[y] = dg[x + y] = udg[x - y + n] = false;
        s[x][y] = '.';
    }
    
    // 分支2:不放皇后
    dfs(x, y + 1, u);
}
int main() {
    cin >> n;
    //初始化棋盘
    for(int i = 0 ; i < n ; i ++) 
        for(int j = 0 ; j < n; j ++)
            s[i][j] = '.';
    dfs(0, 0, 0); //一开始放置了0个皇后
    return 0;
}

改进

上面的方式是枚举每一个格子,进一步想一下,棋盘上的每一行和每一列只能有一个皇后,那么我们可不可以直接枚举每一行(或者列)呢?当然是可以的,时间复杂度O(n * n!)。代码如下(附注释):

#include <iostream>
using namespace std;
char s[10][10]; //存放每一种方案
int n; 
bool col[10],dg[20],udg[20]; //b = x + y, 所以对角线和反对角线开两倍
void dfs(int u) {
    if(u == n) { //n个皇后全部放置
        for(int i = 0 ; i < n ; i ++)  //输出方案
            printf("%s\n",s[i]); 
        puts(""); //题目要求的换行
    }
    for(int i = 0 ; i < n; i ++) {  //对于每一行,我们枚举每一列
        //如果这一列没放过,所在对角线和反对角线也没被放过,那么继续深度搜索
        if(!col[i] && !udg[i + u] && !dg[n - u + i]) {
            col[i] = udg[i + u] = dg[n - u + i] = true;
            s[u][i] = 'Q';
            dfs(u + 1); 
            //恢复现场
            col[i] = udg[i + u] = dg[n - u + i] = false;
            s[u][i] = '.';  
        }
    }
}
int main() {
    cin >> n;
    //初始化棋盘
    for(int i = 0 ; i < n ; i ++) 
        for(int j = 0 ; j < n; j ++)
            s[i][j] = '.';
    dfs(0); //一开始放置了0个皇后
    return 0;
}

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
n皇后问题是一道经典的回溯算法问题,以下是C++的实现代码: ``` #include <iostream> #include <vector> using namespace std; // 判断当前位置是否可以放置皇后 bool is_valid(vector<int>& queens, int row, int col) { for(int i = 0; i < row; i++) { if(queens[i] == col || abs(row - i) == abs(col - queens[i])) { return false; } } return true; } // 递归回溯求解n皇后问题 void backtrack(vector<vector<string>>& res, vector<int>& queens, int row, int n) { if(row == n) { vector<string> solution(n, string(n, '.')); for(int i = 0; i < n; i++) { solution[i][queens[i]] = 'Q'; } res.push_back(solution); } else { for(int col = 0; col < n; col++) { if(is_valid(queens, row, col)) { queens[row] = col; backtrack(res, queens, row + 1, n); queens[row] = -1; } } } } vector<vector<string>> solveNQueens(int n) { vector<vector<string>> res; vector<int> queens(n, -1); backtrack(res, queens, 0, n); return res; } int main() { int n = 4; vector<vector<string>> res = solveNQueens(n); for(int i = 0; i < res.size(); i++) { for(int j = 0; j < res[i].size(); j++) { cout << res[i][j] << endl; } cout << endl; } return 0; } ``` 代码思路: 1. 递归函数 backtrack 用于求解 n 皇后问题,参数 res 表示最终结果,queens 表示每一行皇后所在的列号,row 表示当前处理的行号,n 表示总行数。 2. 判断当前位置是否可以放置皇后的函数 is_valid,用于判断当前位置是否会受到之前皇后的攻击,如果是则返回 false。 3. 在 backtrack 函数中,先判断是否已经处理完了所有行,如果是则将结果加入到 res 中,否则枚举当前行的所有列,如果当前位置可以放置皇后,则继续处理下一行。 4. 主函数中调用 solveNQueens 函数求解 n 皇后问题,并输出结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zoeil

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值