MySQL索引篇(一文讲透索引!)

本文介绍了数据库索引的概念、特点和常见类型,包括哈希索引、空间索引(如R-Tree)和B+Tree索引,讨论了它们的优缺点及适用场景。同时,解释了最左前缀法则、范围查询和索引失效情况,强调了索引设计的原则,以提高查询性能。
摘要由CSDN通过智能技术生成

目录

索引概述(什么是索引?)

1.索引的概念

2.索引的特点(优缺点)

3.索引的结构

哈希索引

空间索引

B+Tree索引

 4.索引的种类(索引分类)

 5.索引语法

6.索引使用

1.最左前缀法则

 2.范围查询

3.索引失效情况

4.指定使用某个索引

5.覆盖索引

6.前缀索引

6.单索引和联合索引

7.索引设计原则

 


 

索引概述(什么是索引?)

1.索引的概念

索引(Index)是一种数据结构,用于快速查找数据库表中的数据。它类似于书籍的目录,可以帮助数据库系统更高效地定位和访问存储在表中的数据。

索引通过创建一个特定的数据结构,以一种有序的方式存储表中的列值和对应的物理存储位置。这样,在执行查询时,MySQL可以首先检查索引,找到符合查询条件的数据行,然后直接跳转到这些行所在的位置,而不需要逐行扫描整个表。这种方式可以极大地提高查询性能和响应时间。

2.索引的特点(优缺点)

索引的主要优点和缺点:

优点:

  1. 提高查询性能:索引可以加快查询操作的速度,特别是在大型表中。通过使用索引,数据库可以更快地定位和检索所需的数据行,而无需扫描整个表。

  2. 加速排序操作:索引对于排序操作也很有帮助。它们可以按特定的列或列组合进行排序,以加快排序的执行速度。

  3. 支持唯一性约束:通过在列上创建唯一索引,可以确保列中的值是唯一的,避免重复数据的插入。

  4. 加速连接操作:当在多个表之间执行连接操作时,索引可以显著提高连接的执行效率。它可以帮助数据库引擎快速定位和匹配连接条件所需的数据。

  5. 减少磁盘IO:索引存储在内存中,这意味着数据库引擎可以直接访问索引数据而无需每次都进行磁盘IO操作,从而减少了IO开销。

缺点:

  1. 增加存储空间:索引需要占用额外的存储空间。对于大型表或包含多个索引的表,索引所占用的空间可能很大。

  2. 增加写操作的开销:当对表进行插入、更新或删除操作时,索引也需要进行更新,这会增加写操作的开销。因此,在某些情况下,索引可能会对写操作的性能产生一定的负面影响。

  3. 延迟更新:当对表进行更新操作时,索引可能会导致一些延迟,因为它们需要被更新以保持数据的一致性。这可能会对某些需要实时数据更新的应用程序产生影响。

  4. 增加索引维护成本:对于大型数据库和频繁更新的表,维护索引可能需要较长的时间和系统资源。索引的创建、删除和重新建立等操作都需要一定的成本。

因此,在设计数据库时,需要权衡索引的使用,根据具体的应用场景和查询需求来确定是否需要索引,以及选择合适的列进行索引。


3.索引的结构

哈希索引

MySQL中的哈希索引是一种用于快速查找数据的索引类型。它使用哈希函数将索引键映射到哈希值,然后将哈希值与存储位置相关联,从而实现高效的数据访问。

  1. 哈希函数:哈希索引使用哈希函数索引键转换为哈希值。哈希函数接受一个输入值并生成一个固定长度的哈希码。在MySQL中,哈希函数常用的有MD5、SHA1等。

  2. 哈希桶:哈希索引使用哈希桶来存储哈希值和对应的存储位置。一个哈希桶是一个存储空间,它可以容纳一个或多个索引键和对应的数据行。

  3. 哈希冲突:由于哈希函数的输出是有限的,不同的索引键可能会产生相同的哈希值,这就是哈希冲突。当出现哈希冲突时,可以使用不同的策略来处理,例如链式法或开放寻址法。

  4. 数据存储:哈希索引将哈希值和数据存储位置相关联,并将其存储在哈希桶中。当查询时,通过计算索引键的哈希值,可以快速定位到对应的哈希桶,然后再在桶内进行进一步的查找。

举例: 

假设有一个存储学生信息的表格,包含以下列:

  • id:学生ID,唯一标识符
  • name:学生姓名
  • age:学生年龄

我们想要在id列上创建一个哈希索引。

首先,我们需要创建一个哈希函数,例如使用MD5哈希函数。对于每个id,我们使用哈希函数计算出一个哈希值,并将其与存储位置相关联。

假设我们有以下数据:

idnameage
1Alice20
2Bob21
3Charlie19

通过哈希函数,我们可以得到以下哈希值:

idHash Value
1abc123...
2def456...
3xyz789...

接下来,我们将哈希值和存储位置相关联并存储在哈希桶中。每个桶可以容纳一个或多个哈希值和对应的数据行。

在哈希桶中存储数据的示例:

Bucket 1:

  • Hash Value: abc123...
  • Data: (1, Alice, 20)

Bucket 2:

  • Hash Value: def456...
  • Data: (2, Bob, 21)

Bucket 3:

  • Hash Value: xyz789...
  • Data: (3, Charlie, 19)

 

当执行查询时,例如查找ID为1的学生,MySQL将使用哈希函数计算出ID的哈希值,然后定位到对应的哈希桶(Bucket 1)。在桶内,我们找到了学生ID为1的记录。

哈希索引的优点是可以实现快速的数据访问,因为哈希索引不需要遍历整个索引,而是根据哈希值直接定位到对应的数据位置。然而,它也有一些限制。由于哈希函数是固定长度的,可能存在哈希冲突,需要额外的处理。此外,哈希索引适用于等值查询,但不适用于范围查询或排序操作。

空间索引

MySQL中的空间索引结构是一种特殊类型的索引,用于高效地存储和查询具有空间几何属性的数据。它允许在空间维度上进行查询和分析,例如地理信息系统(GIS)数据或其他包含位置信息的数据。

在MySQL中,最常用的空间索引结构是R-Tree(Region Tree)。R-Tree是一种多维索引结构,可以有效地组织和搜索具有空间范围的数据。它的结构类似于B-Tree,但是适用于多维数据。R-Tree将空间数据分割为一系列矩形区域,并使用这些区域构建树形结构。每个节点代表一个矩形区域,并包含其子节点或存储的数据。这种结构使得R-Tree可以快速定位和检索具有特定空间范围的数据。

R-Tree结构介绍:

R-Tree(Region Tree)是一种多维索引结构,被广泛用于空间数据的存储和查询。它通过将空间数据分割成一系列矩形区域,并使用这些区域构建树形结构,实现了高效的空间数据访问和搜索。

R-Tree的核心思想是将空间数据划分为不同的矩形区域,每个矩形区域可以代表一个空间对象或者更小的子矩形区域。这些矩形区域构成了树形结构,其中根节点表示整个空间范围,叶子节点存储实际的数据项。

下面是R-Tree的基本结构和原理:

  1. 根节点(Root Node):根节点是R-Tree的顶层节点,它表示整个空间范围。根节点可以有多个子节点,每个子节点代表一个矩形区域。

  2. 分支节点(Branch Node):分支节点是非叶子节点,它存储了子节点的指针和相应的矩形区域。分支节点的矩形区域是其子节点的最小外包矩形(Minimum Bounding Rectangle,MBR),它包含了子节点所代表的矩形区域。

  3. 叶子节点(Leaf Node):叶子节点是存储实际数据项的节点,每个叶子节点存储一个或多个空间对象的数据。叶子节点的矩形区域也是其所包含数据的最小外包矩形。

  4. 最小外包矩形(MBR):最小外包矩形是指能够包围一个对象或一组对象的最小矩形。在R-Tree中,每个节点的矩形区域都是其子节点或数据项的最小外包矩形。

R-Tree的构建过程可以简要描述为:

  1. 将初始数据集分割为一系列矩形区域,每个区域作为一个叶子节点插入R-Tree。

  2. 当叶子节点的数量超过了预定义的最大容量时,触发节点分裂操作。分裂操作会将叶子节点分为两个新的叶子节点,并将它们插入到父节点中。分裂过程会重新计算父节点的最小外包矩形。

  3. 重复步骤2,直到树的高度满足一定的条件或者所有数据项都被插入到树中。

R-Tree的搜索操作也很简单:

  1. 从根节点开始,检查根节点的矩形区域与查询范围是否相交。

  2. 如果相交,进入相应的子节点,继续检查子节点的矩形区域与查询范围的相交情况。

  3. 递归地进行步骤2,直到达到叶子节点。

  4. 在叶子节点中,检查实际数据项与查询范围的匹配情况。

  5. 返回匹配的数据项。

通过这种方式,R-Tree可以高效地支持空间范围查询,例如搜索给定范围内的空间对象、查找附近的对象等。

R-Tree在许多领域中得到广泛应用,如地理信息系统(GIS)、数据库系统、图像处理等。它提供了高效的空间数据索引和查询能力,使得对大规模空间数据的处理更加便捷和高效。

下面是一个使用空间索引的示例。假设有一个表格存储了不同城市的位置信息,包括城市名称和经纬度坐标。我们可以使用空间索引来优化对城市进行附近搜索的查询操作。

首先,我们创建一个包含空间索引的表格:

CREATE TABLE cities (
    id INT AUTO_INCREMENT PRIMARY KEY,
    name VARCHAR(50),
    location POINT,
    SPATIAL INDEX(location)
);

在上述示例中,location字段使用POINT数据类型存储经纬度坐标,并创建了一个空间索引。

接下来,我们可以插入一些城市数据:

INSERT INTO cities (name, location) VALUES
    ('New York', POINT(-74.0059, 40.7128)),
    ('London', POINT(-0.1276, 51.5074)),
    ('Tokyo', POINT(139.6917, 35.6895)),
    ('Sydney', POINT(151.2093, -33.8688));

现在,我们可以使用空间索引进行附近搜索。例如,查找距离给定经纬度坐标(-74.006, 40.713)一定范围内的城市:

SELECT name FROM cities
WHERE MBRContains(
    GeomFromText('Polygon((? ?, ?, ?, ?))'),
    location
);

上述查询中的MBRContains函数用于判断给定的矩形范围是否包含在索引的矩形区域内。GeomFromText函数用于将文本表示的几何形状转换为空间对象。

通过使用空间索引,我们可以高效地查找附近的城市,而不需要遍历整个表格。这对于处理大规模的地理位置数据非常有用。

总结一下,MySQL中的空间索引结构(如R-Tree)是一种用于存储和查询具有空间几何属性的数据的索引方式。它可以优化空间范围查询,并提供高效的地理信息分析能力。

B+Tree索引

B+树索引是MySQL中常用的索引结构之一,它用于提高数据库查询的效率。B+树索引采用树形结构存储数据,并支持快速的查找、插入和删除操作。

B+树索引的结构: B+树是一种平衡的树形数据结构,由一个根节点、内部节点和叶子节点组成。根节点和内部节点存储索引键值和指向子节点的指针,而叶子节点存储索引键值和对应的数据指针。

  1. 根节点(Root Node): 根节点是B+树索引的最顶层节点,位于树的顶部。它是树的起始点,用于定位其他节点。

  2. 叶子节点(Leaf Node): 叶子节点是B+树索引的底层节点。它们存储索引键值和对应的数据指针(或称为数据行指针)。叶子节点通过链表连接,形成有序的叶子节点列表,便于范围查询。叶子节点中的索引键值按照顺序排列,使得相邻叶子节点的键值范围连续。

  3. 内部节点(Internal Node)是特指那些非叶子节点的节点。内部节点存储索引键值和指向子节点的指针,用于导航到下一级的子节点。

插入操作:

  1. 从根节点开始,根据插入键值找到对应的子节点。
  2. 如果子节点是叶子节点,将插入键值和对应的数据指针插入到叶子节点的合适位置。
  3. 如果子节点是内部节点,重复上述步骤,直到到达叶子节点。
  4. 如果插入导致叶子节点的索引键值超过了节点容量,进行分裂操作。
  5. 分裂操作将叶子节点分成两个节点,并将中间的索引键值提升到父节点,如果父节点也满了,则递归进行分裂。
  6. 更新父节点的索引键值和指针,确保树的平衡性。

 4.索引的种类(索引分类)

索引的常见的几个类型如下表:

索引类型描述关键字
主键索引 (Primary Key Index)唯一标识表中每一行数据的索引。每个表只能有一个主键索引。主键索引可以加速数据的检索和连接操作。PRIMARY KEY
唯一索引 (Unique Index)确保索引列的值在表中是唯一的,允许空值。唯一索引可以加速数据的检索和连接操作。UNIQUE
普通索引 (Normal Index)非唯一索引,允许重复的索引值。普通索引可以加速数据的检索和连接操作。
全文索引 (Full-Text Index)用于对文本数据进行全文搜索的索引。全文索引适用于大文本字段的搜索,如文章内容、产品描述等。FULLTEXT
组合索引 (Composite Index)基于多个列创建的索引,可以包含多个索引列。组合索引可以提高多列查询的性能,特别是涉及多个索引列的条件查询时。
空间索引 (Spatial Index)优化地理数据查询的索引,支持在空间坐标系统中执行空间关系的操作,如距离计算、几何形状匹配等。空间索引适用于存储和查询包含地理位置信息的数据。SPATIAL

 

 

 


 5.索引语法

创建索引:

CREATE INDEX index_name ON table_name (column1, column2, ...);

 其中,index_name 是索引的名称,table_name 是要创建索引的表名,(column1, column2, ...) 是需要包含在索引中的列名。

删除索引:

DROP INDEX index_name ON table_name;

 这将删除名为 index_name 的索引。

修改表添加索引:

ALTER TABLE table_name ADD INDEX index_name (column1, column2, ...);

这将向表 table_name 添加一个名为 index_name 的索引,该索引包含列 (column1, column2, ...)

修改表删除索引:

ALTER TABLE table_name DROP INDEX index_name;

 这将从表 table_name 中删除名为 index_name 的索引。

举例:

当假设我们有一个名为 users 的表,其中包含以下列:idnameemail。现在我们将创建一个基于 name 列的索引。

CREATE INDEX idx_name ON users (name);

这将在 users 表的 name 列上创建一个名为 idx_name 的索引。这将有助于提高按照 name 列进行查询的性能。

如果我们要删除这个索引,可以使用以下语句:

DROP INDEX idx_name ON users;

这将从 users 表中删除名为 idx_name 的索引。

如果要修改表并添加索引,可以使用以下语句:

ALTER TABLE users ADD INDEX idx_name (name);

这将向 users 表添加一个名为 idx_name 的索引,该索引基于 name 列。

如果要修改表并删除索引,可以使用以下语句:

ALTER TABLE users DROP INDEX idx_name;

这将从 users 表中删除名为 idx_name 的索引。


6.索引使用

1.最左前缀法则

MySQL的最左前缀法则是一种优化查询性能的策略,它利用数据库中的索引来加速查询操作。该法则基于索引的最左前缀匹配原则。

在MySQL中,当你创建一个索引时,它会按照列的顺序存储数据。例如,如果你创建了一个索引包含列(A,B,C),那么索引将按照 A 的顺序存储数据,然后是 B,最后是 C。当你执行查询时,MySQL可以利用这个索引来加速搜索过程。

最左前缀法则指出,如果你的查询条件涉及到索引的前缀列,MySQL可以有效地使用该索引来加速查询。换句话说,当你使用索引的最左前缀列作为查询条件时,MySQL将使用索引来过滤数据,并且只检查满足条件的行。

例如,考虑以下查询:

SELECT * FROM my_table WHERE A = 1 AND B = 2;

如果你在列 A 和列 B 上创建了一个联合索引(A,B),那么根据最左前缀法则,MySQL将使用该索引来查找所有 A 等于 1 且 B 等于 2 的行。它会首先利用索引找到所有 A 等于 1 的行,然后在这些行中进一步过滤出 B 等于 2 的行。

然而,如果你的查询条件只涉及到索引的非前缀列,MySQL将无法使用最左前缀法则。例如:

SELECT * FROM my_table WHERE B = 2;

对于这个查询,最左前缀法则不适用于(A,B)索引,因为查询条件只涉及到 B 列。在这种情况下,MySQL将不会使用索引,而是执行全表扫描来查找满足条件的行。

因此,在设计数据库表和索引时,了解最左前缀法则可以帮助你合理选择索引列的顺序。将最常用的、最具选择性的列放在索引的前面,以便最大程度地利用最左前缀法则来优化查询性能。

需要注意的是,最左前缀法则只适用于B-tree索引,而不适用于哈希索引或全文索引。

 2.范围查询

 

3.索引失效情况

索引在以下情况下可能会失效或无法使用:

  1. 不符合最左前缀法则:如果查询条件不是按照索引的最左前缀顺序给出,MySQL将无法有效使用索引。例如,如果你创建了一个联合索引(A,B),但查询条件只涉及到列 B,那么索引将无法使用。

  2. 使用函数或表达式:如果在查询条件中使用函数或表达式对列进行处理,索引可能无法使用。因为索引是按照列值存储的,而不是函数或表达式的结果。例如,如果你在查询条件中使用了函数 LOWER(column),索引可能无法使用,而需要进行全表扫描。

  3. 数据类型不匹配:当查询条件中的数据类型与索引列的数据类型不匹配时,索引可能无法使用。MySQL可能会尝试进行类型转换,但如果转换过程中有数据类型不匹配或函数操作,索引将无法使用。

  4. LIKE 查询使用通配符:% 或 _ :在使用 LIKE 查询时,如果通配符 % 或 _ 出现在查询条件的开头,索引可能无法使用。例如,查询条件为 WHERE column LIKE '%abc',索引将无法使用。

  5. 数据量过小:当表中的数据量非常小(通常小于索引的选择性),MySQL可能会选择执行全表扫描而不使用索引,因为全表扫描更快速。

  6. 统计信息不准确:MySQL使用统计信息来评估使用索引的成本和效益。如果统计信息不准确或过期,MySQL可能会做出错误的决策,导致索引不被使用。

  7. 索引失效的隐式类型转换:当查询条件与索引列的数据类型不完全匹配,但可以通过隐式类型转换进行匹配时,索引可能会失效。隐式类型转换可能导致索引的使用效率下降。

  8. 大范围的范围查询:当范围查询返回的结果集很大时,MySQL可能会选择执行全表扫描而不使用索引,以避免在索引页之间进行频繁的磁盘读取。

  9. or连接索引失效情况:如果or前的条件的列有索引,而后面的列没有索引,那么涉及的索引都不会被用到。


4.指定使用某个索引

在MySQL中,可以通过使用USE INDEXFORCE INDEX子句来指定查询时使用的索引。这可以用于覆盖MySQL的查询优化器的选择,强制查询使用特定的索引。 

use属于建议,MySQL不一定按照你的进行

SELECT * FROM table_name USE INDEX (index_name1, index_name2, ...)
WHERE condition;

force属于强制,MySQL无条件遵循 

SELECT * FROM my_table FORCE INDEX (idx_column1, idx_column2)
WHERE condition;

 需要注意的是,虽然USE INDEXFORCE INDEX可以强制使用指定的索引,但不一定意味着这样做总是更好。MySQL的查询优化器通常会根据查询的成本和效益选择最适合的索引。因此,在使用这些子句时,应该谨慎评估索引的选择和查询的性能,确保指定的索引确实能够提供更好的查询性能。


5.覆盖索引

覆盖索引是指一个查询可以完全通过索引来满足,而无需访问实际的数据行。当一个查询只需要索引中包含的列的值,而不需要访问表的其他列时,就可以使用覆盖索引。这可以显著提高查询性能,减少了访问磁盘读取数据行的需要,减少了I/O操作和内存开销。

使用覆盖索引的优点包括:

  1. 减少磁盘I/O:查询只需要读取索引页,而不需要读取实际数据行。这可以减少磁盘I/O操作的次数,提高查询性能。

  2. 减少内存开销:由于只需要读取索引页,而不需要将实际数据行加载到内存中,这可以减少内存的使用量,提高查询效率。

  3. 减少网络传输:对于分布式系统,当使用覆盖索引时,只需传输索引页的数据,而不是传输实际数据行的内容,可以减少网络传输的数据量。

以下是一个示例,说明如何使用覆盖索引:

假设有一个名为orders的表,包含以下列:order_idcustomer_idorder_datetotal_amount。假设我们想要查询某个特定日期的订单总金额。

首先,我们可以创建一个包含 (order_date, total_amount) 列的联合索引:

CREATE INDEX idx_order_date_total_amount ON orders (order_date, total_amount);

 接下来,我们可以执行查询并使用覆盖索引:

SELECT order_date, total_amount
FROM orders
WHERE order_date = '2023-05-19';

在这个查询中,我们只需要 order_datetotal_amount 两列的值。由于我们已经在索引中包含了这两列,MySQL可以直接从索引中读取所需的值,而无需访问实际的数据行。这样,我们就实现了覆盖索引。

使用覆盖索引可以显著提高查询性能,特别是当表的数据量较大,需要读取的数据行较多时。它可以减少磁盘I/O和内存开销,并加快查询的执行速度。然而,需要根据具体的查询需求和数据访问模式来评估和设计索引,以实现最佳的性能提升。


6.前缀索引

前缀索引是一种索引技术,允许只对列值的一部分进行索引。它可以在节省索引空间的同时,提高查询性能。前缀索引在某些情况下非常有用,特别是当列的值较长时或者列的选择性较低时。

在MySQL中,可以使用前缀长度来指定前缀索引。指定的前缀长度决定了在索引中存储的实际值的字符数。

以下是一个示例,说明如何创建和使用前缀索引:

假设有一个名为products的表,其中包含一个列description,用于存储产品的描述。假设description列的值很长(例如,超过100个字符),但我们只对前20个字符的值感兴趣,并且希望为它创建一个索引。

首先,我们可以创建一个前缀索引:

CREATE INDEX idx_description ON products (description(20));

上述语句中的(20)表示只对description列的前20个字符创建索引。

接下来,我们可以执行查询并使用前缀索引:

SELECT * FROM products WHERE description LIKE 'T-shirt%';

在这个查询中,我们使用了LIKE操作符并指定了一个前缀,以匹配以'T-shirt'开头的描述。由于我们在前缀索引中只存储了前20个字符的值,MySQL只需要检查索引中的前缀匹配项,而不需要访问实际的数据行。这样,我们就可以利用前缀索引来加速查询。

前缀索引的优点是减少了索引的存储空间,特别是在列值很长或者列的选择性较低的情况下。然而,使用前缀索引也存在一些限制和注意事项:

  1. 前缀长度的选择:选择适当的前缀长度非常重要。如果前缀长度太短,可能会导致索引失效,无法满足查询需求;如果前缀长度太长,索引的存储空间和查询性能的提升可能会受到影响。

  2. 不适用于所有类型的查询:前缀索引通常适用于LIKE=等前缀匹配的查询,但不适用于需要完全匹配或范围查询的情况。

  3. 可能导致模糊匹配:由于只存储了部分值,前缀索引可能会导致模糊匹配,即匹配不完全的情况。因此,在使用前缀索引时需要注意查询的准确性和匹配方式。

综上所述,前缀索引是一种在索引中只存储列值的一部分的技术。它可以节省索引空间并提高查询性能,特别是在列值较长或选择性较低的情况下。但需要谨慎选择前缀长度,并注意其适用性和限制。


6.单索引和联合索引

单索引和联合索引是两种常见的索引类型,用于提高数据库查询的性能和效率。

  • 单索引(Single Index): 单索引是指仅对单个列创建的索引。它适用于只针对一个列进行查询或排序的情况。单索引可以加快查询速度,减少数据库的扫描量。

以下是一个示例,说明如何创建和使用单索引:

假设有一个名为employees的表,其中包含列 employee_idfirst_namelast_name。我们希望对 last_name 列创建单索引。

创建单索引的语法如下:

CREATE INDEX idx_last_name ON employees (last_name);
SELECT * FROM employees WHERE last_name = 'Smith';
  • 联合索引(Composite Index): 联合索引是指对多个列创建的索引,它可以覆盖多个列的查询和排序需求。联合索引适用于多列的联合查询或按多个列进行排序的情况。

以下是一个示例,说明如何创建和使用联合索引:

假设有一个名为orders的表,其中包含列 order_idcustomer_idorder_date。我们希望对 customer_idorder_date 列创建联合索引。

创建联合索引的语法如下:

CREATE INDEX idx_customer_order_date ON orders (customer_id, order_date);

创建索引后,可以在查询中使用它来加速联合查询:

SELECT * FROM orders WHERE customer_id = 123 AND order_date > '2022-01-01';

上述查询将利用联合索引加速查找顾客ID为 123 且在 2022 年 1 月 1 日之后下的订单。

使用联合索引时需要注意以下几点:

  • 联合索引的顺序很重要:索引的顺序应根据查询条件和排序需求进行选择。最常用的列应该放在前面,以便提高索引的效果。

  • 覆盖索引(Covering Index):联合索引可以包含多个列的值,因此在某些情况下,查询可能会直接从索引中获取所需的所有数据,而无需访问实际的数据行。这称为覆盖索引,可以进一步提高查询性能。

综上所述,单索引和联合索引是常见的索引类型,用于提高数据库查询的性能。单索引适用于单列查询或排序,而联合索引适用于多列联合查询或排序。正确选择和使用索引可以显著提高数据库的查询效率。


7.索引设计原则

在设计索引时,有一些规范原则可以指导你做出合理的决策,以获得更好的查询性能和数据库效率。

  1. 选择适当的索引列:

    • 选择常用于查询条件的列作为索引列,例如经常用于过滤、连接或排序的列。
    • 避免对频繁更新的列创建索引,因为维护索引可能会增加写入操作的开销。
    • 考虑选择具有高选择性(即唯一性)的列作为索引列,以减少索引扫描的数据量。
  2. 联合索引的顺序:

    • 对于联合索引,将最常用的列放在前面,以提高索引的效果。
    • 根据查询的频率和特点选择联合索引的列顺序,以支持最常见的查询模式。
  3. 考虑覆盖索引:

    • 对于一些查询,如果索引包含了查询所需的所有列,可以避免访问实际数据行,从而提高查询性能。这种索引称为覆盖索引。
    • 考虑将查询经常使用的列包含在索引中,以实现覆盖索引的效果。
  4. 避免创建过多的索引:

    • 创建过多的索引会增加数据库的存储空间和维护成本,还可能导致索引选择的困惑和性能下降。
    • 评估和权衡索引的需求,避免创建冗余和不必要的索引。
  5. 定期维护和优化索引:

    • 定期检查和优化索引以确保其性能和效率。
    • 监控查询执行计划、查询性能和索引的使用情况,针对性地进行索引重建、重组或删除操作。
  6. 考虑特定数据库引擎的特性:

    • 不同的数据库引擎对索引的处理和优化方式可能有所不同。了解并考虑特定数据库引擎的特性和最佳实践。

这些规范原则可以作为索引设计的指导,但具体的索引设计仍需根据具体的业务需求、数据模型和查询模式来进行评估和决策。建议进行性能测试和监测,根据实际情况进行调整和优化。


 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值