关于一般直线的对称点

关于一般直线的对称点

结论

记点 ( x 1 , y 1 ) (x_1,y_1) (x1,y1)关于直线 A x + B y + C Ax+By+C Ax+By+C的对称点为 ( x 2 , y 2 ) (x_2,y_2) (x2,y2),则
{ x 2 = 1 A 2 + B 2 [ ( B 2 − A 2 ) x 1 − 2 A B y 1 − 2 A C ] y 2 = 1 A 2 + B 2 [ ( A 2 − B 2 ) y 1 − 2 A B x 1 − 2 B C ] \begin{cases} x_2=\frac{1}{A^2+B^2}[(B^2-A^2)x_1-2ABy_1-2AC] \\ y_2=\frac{1}{A^2+B^2}[(A^2-B^2)y_1-2ABx_1-2BC] \end{cases} {x2=A2+B21[(B2A2)x12ABy12AC]y2=A2+B21[(A2B2)y12ABx12BC]

推导过程

在这里插入图片描述

如图所示,考虑一般直线 A x + B y + C = 0 Ax+By+C=0 Ax+By+C=0,点 ( x 1 , y 1 ) (x_1,y_1) (x1,y1)关于直线的对称点为 ( x 2 , y 2 ) (x_2,y_2) (x2,y2) ( x 0 , y 0 ) (x_0,y_0) (x0,y0)为两对称点连线与直线的交点。根据对称点的性质有:
( x 2 − x 0 , y 2 − y 0 ) = ( x 0 − x 1 , y 0 − y 1 ) ⇒ { x 2 = 2 x 0 − x 1 y 2 = 2 y 0 − y 1 \begin{aligned} &(x_2-x_0,y_2-y_0)=(x_0-x_1,y_0-y_1) \\ \Rightarrow \quad & \begin{cases} x_2=2x_0-x_1 \\ y_2=2y_0-y_1 \end{cases} \end{aligned} (x2x0,y2y0)=(x0x1,y0y1){x2=2x0x1y2=2y0y1
因为 ( x 1 , y 1 ) (x_1,y_1) (x1,y1)已知,所以问题转换为求 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)

根据对称点的性质,点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)与点 ( x 1 , y 1 ) (x_1,y_1) (x1,y1)构成的向量与直线垂直,即向量积为0。因此
( x 0 − x 1 , y 0 − y 1 ) ⋅ ( B , − A ) = 0 ⇒ B ( x 0 − x 1 ) = A ( y 0 − y 1 ) (x_0-x_1,y_0-y_1)\cdot(B,-A)=0 \quad \Rightarrow \quad B(x_0-x_1)=A(y_0-y_1) (x0x1,y0y1)(B,A)=0B(x0x1)=A(y0y1)
又因为点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)在直线上,所以
A x 0 + B y 0 + C = 0 Ax_0+By_0+C=0 Ax0+By0+C=0
解方程组
{ B ( x 0 − x 1 ) = A ( y 0 − y 1 ) A x 0 + B y 0 + C = 0 \begin{cases} B(x_0-x_1)=A(y_0-y_1)\\ Ax_0+By_0+C=0 \end{cases} {B(x0x1)=A(y0y1)Ax0+By0+C=0
得:
{ x 0 = 1 A 2 + B 2 ( B 2 x 1 − A B y 1 − A C ) y 0 = 1 A 2 + B 2 ( A 2 y 1 − A B x 1 − B C ) \begin{cases} x_0=\frac{1}{A^2+B^2}(B^2x_1-ABy_1-AC) \\ y_0=\frac{1}{A^2+B^2}(A^2y_1-ABx_1-BC) \end{cases} {x0=A2+B21(B2x1ABy1AC)y0=A2+B21(A2y1ABx1BC)
进而:
{ x 2 = 1 A 2 + B 2 [ ( B 2 − A 2 ) x 1 − 2 A B y 1 − 2 A C ] y 2 = 1 A 2 + B 2 [ ( A 2 − B 2 ) y 1 − 2 A B x 1 − 2 B C ] \begin{cases} x_2=\frac{1}{A^2+B^2}[(B^2-A^2)x_1-2ABy_1-2AC] \\ y_2=\frac{1}{A^2+B^2}[(A^2-B^2)y_1-2ABx_1-2BC] \end{cases} {x2=A2+B21[(B2A2)x12ABy12AC]y2=A2+B21[(A2B2)y12ABx12BC]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值