关于一般直线的对称点
结论
记点
(
x
1
,
y
1
)
(x_1,y_1)
(x1,y1)关于直线
A
x
+
B
y
+
C
Ax+By+C
Ax+By+C的对称点为
(
x
2
,
y
2
)
(x_2,y_2)
(x2,y2),则
{
x
2
=
1
A
2
+
B
2
[
(
B
2
−
A
2
)
x
1
−
2
A
B
y
1
−
2
A
C
]
y
2
=
1
A
2
+
B
2
[
(
A
2
−
B
2
)
y
1
−
2
A
B
x
1
−
2
B
C
]
\begin{cases} x_2=\frac{1}{A^2+B^2}[(B^2-A^2)x_1-2ABy_1-2AC] \\ y_2=\frac{1}{A^2+B^2}[(A^2-B^2)y_1-2ABx_1-2BC] \end{cases}
{x2=A2+B21[(B2−A2)x1−2ABy1−2AC]y2=A2+B21[(A2−B2)y1−2ABx1−2BC]
推导过程
如图所示,考虑一般直线
A
x
+
B
y
+
C
=
0
Ax+By+C=0
Ax+By+C=0,点
(
x
1
,
y
1
)
(x_1,y_1)
(x1,y1)关于直线的对称点为
(
x
2
,
y
2
)
(x_2,y_2)
(x2,y2),
(
x
0
,
y
0
)
(x_0,y_0)
(x0,y0)为两对称点连线与直线的交点。根据对称点的性质有:
(
x
2
−
x
0
,
y
2
−
y
0
)
=
(
x
0
−
x
1
,
y
0
−
y
1
)
⇒
{
x
2
=
2
x
0
−
x
1
y
2
=
2
y
0
−
y
1
\begin{aligned} &(x_2-x_0,y_2-y_0)=(x_0-x_1,y_0-y_1) \\ \Rightarrow \quad & \begin{cases} x_2=2x_0-x_1 \\ y_2=2y_0-y_1 \end{cases} \end{aligned}
⇒(x2−x0,y2−y0)=(x0−x1,y0−y1){x2=2x0−x1y2=2y0−y1
因为
(
x
1
,
y
1
)
(x_1,y_1)
(x1,y1)已知,所以问题转换为求
(
x
0
,
y
0
)
(x_0,y_0)
(x0,y0)。
根据对称点的性质,点
(
x
0
,
y
0
)
(x_0,y_0)
(x0,y0)与点
(
x
1
,
y
1
)
(x_1,y_1)
(x1,y1)构成的向量与直线垂直,即向量积为0。因此
(
x
0
−
x
1
,
y
0
−
y
1
)
⋅
(
B
,
−
A
)
=
0
⇒
B
(
x
0
−
x
1
)
=
A
(
y
0
−
y
1
)
(x_0-x_1,y_0-y_1)\cdot(B,-A)=0 \quad \Rightarrow \quad B(x_0-x_1)=A(y_0-y_1)
(x0−x1,y0−y1)⋅(B,−A)=0⇒B(x0−x1)=A(y0−y1)
又因为点
(
x
0
,
y
0
)
(x_0,y_0)
(x0,y0)在直线上,所以
A
x
0
+
B
y
0
+
C
=
0
Ax_0+By_0+C=0
Ax0+By0+C=0
解方程组
{
B
(
x
0
−
x
1
)
=
A
(
y
0
−
y
1
)
A
x
0
+
B
y
0
+
C
=
0
\begin{cases} B(x_0-x_1)=A(y_0-y_1)\\ Ax_0+By_0+C=0 \end{cases}
{B(x0−x1)=A(y0−y1)Ax0+By0+C=0
得:
{
x
0
=
1
A
2
+
B
2
(
B
2
x
1
−
A
B
y
1
−
A
C
)
y
0
=
1
A
2
+
B
2
(
A
2
y
1
−
A
B
x
1
−
B
C
)
\begin{cases} x_0=\frac{1}{A^2+B^2}(B^2x_1-ABy_1-AC) \\ y_0=\frac{1}{A^2+B^2}(A^2y_1-ABx_1-BC) \end{cases}
{x0=A2+B21(B2x1−ABy1−AC)y0=A2+B21(A2y1−ABx1−BC)
进而:
{
x
2
=
1
A
2
+
B
2
[
(
B
2
−
A
2
)
x
1
−
2
A
B
y
1
−
2
A
C
]
y
2
=
1
A
2
+
B
2
[
(
A
2
−
B
2
)
y
1
−
2
A
B
x
1
−
2
B
C
]
\begin{cases} x_2=\frac{1}{A^2+B^2}[(B^2-A^2)x_1-2ABy_1-2AC] \\ y_2=\frac{1}{A^2+B^2}[(A^2-B^2)y_1-2ABx_1-2BC] \end{cases}
{x2=A2+B21[(B2−A2)x1−2ABy1−2AC]y2=A2+B21[(A2−B2)y1−2ABx1−2BC]