1.初级版
题目:青蛙跳台阶,n个台阶,青蛙一次可以跳一个台阶,一次也可以跳两个台阶,问这只青蛙要跳到第n个台阶,有多少种跳法。
分析:递归的本质是把大事化小,把一个复杂的问题层层转化为一个与原问题相似但规模较小的问题来求解。
当台阶数为1时,青蛙只需跳一次即可(1)
当台阶数为2时,有两种跳法,分别是(1,1),(2)
当台阶数为3时,有三种跳法,分别是((1,1),1),((2),1),((1),2)
......
由此可见,青蛙跳到台阶数为3可以看成先跳到台阶数为2,再跳一个台阶,或者先跳到台阶数为1,再跳两个台阶,两种方法次数之和,那么青蛙跳到第n个台阶,就可以看成是青蛙先跳到n-1个台阶,再跳一个台阶,和先跳到n-2个台阶,再跳两个台阶次数之和。
代码如下:
#include<stdio.h>
int Jump(int n) {
if (n == 1) {
return 1;
}
else if(n==2) {
return 2;
}
else {
return Jump(n - 1) + Jump(n - 2);
}
}
int main()
{
int n;
scanf("%d", &n);
int ret=Jump(n);
printf("青蛙跳到第%d层共有%d种跳法", n, ret);
}
2.高级版
题目:青蛙跳台阶,n个台阶,青蛙一次可以跳1个台阶,2个台阶......n个台阶,问这只青蛙要跳到第n个台阶,有多少种跳法。
分析:当n为1时,f(1)=1 //只有一种跳法
当n为2时,f(2)=f(2-1)+f(2-2) //跳到最后一个台阶,有两种跳法,最后一次跳1阶和最后一次跳2阶
当n为3时,f(3)=f(3-1)+f(3-2)+f(3-3) //跳到最后一个台阶,有三种跳法,最后一次跳1阶,最后一次跳2阶,最后一次跳3阶
当n-1阶台阶时,f(n-1)=f((n-1)-1)+f((n-1)-2)+......+f((n-1)-(n-2))+f((n-1)-(n-1))
化简得:f(n-1)=f(0)+f(1)+f(2)+......+f(n-2) <1>
当台阶数为n时,f(n)=f(n-1)+f(n-2)+f(n-3)+......+f(n-(n-1))+f(n-n)
化简得:f(n)=f(0)+f(1)+f(2)+......+f(n-1) <2>
由<1>式和<2>式可得f(n)=2f(n-1)
#include<stdio.h>
int Jump(int n) {
if (n == 1) {
return 1;
}
else {
return 2 * Jump(n - 1);
}
}
int main()
{
int n;
scanf("%d", &n);
int ret=Jump(n);
printf("青蛙跳到第%d层共有%d种跳法", n, ret);
}
结果如下:
以上就是青蛙跳台阶的所有情况,如果文章的内容对你有帮助的话记得点赞和收藏,谢谢!!!
有什么问题我们评论区见