目录
题目描述
给定整数x,y,你需要输出xyx^yxy mod ppp 的值
输入描述:
第一行一个整数t(1≤t≤10),表示接下来有t组测试用例,每个测试用例有三行整数x,y,p0≤x≤100000,0≤y≤10100000,100000≤p≤1000000007
输出描述:
输出t行,每行一个整数代表xyx^yxy mod p的值。
示例1
输入
5 3 4 998244353 2 10 998244353 0 100 998244353 1 100 998244353 4 100 1000000007
输出
81 1024 0 1 499445072
备注:
00=10^{0}=100=1
思路:
1,y太大,所以用字符串计算
2,按位计算,把每一位乘后然后取模
代码:
#include<bits/stdc++.h>
using namespace std;
#define int long long
typedef long long ll
#define pu push_back
#define rep(i,m,n) for(int i=m;i<=n;++i)
#define atp(i,m,n) for(int i=m;i>=n;--i)
#define pii pair<int,int>
#define pll pair<long,long>
#define vi vector<int>
#define si set<int>
; const int maxj =2e5+100,mod = 998244353;
// template<class t> void read(t & res) {
// char c;t flag=1;
// while((c=getchar())<'0'||c>'9')if(c=='-')flag=-1;res=c-'0';
// while((c=getchar())>='0'&&c<='9')res=res*10+c-'0';res*=flag;
//}
int ksm(int a,int b,int p){
int ans=1;
while(b){
if(b&1){
ans=ans*a%p;
}
a=a*a%p;
b>>=1;
}
return ans;
}
void solve(){//大整数,按位算,模拟乘方运算,倒着算
int x,p;string y;
cin>>x>>y>>p;int ans=1;
atp(i,y.size()-1,0){
int cnt=y[i]-'0';
rep(j,1,cnt)ans=ans*x%p;
int n=1;
rep(j,1,10)n=n*x%p;//有位数影响
x=n;
}
cout<<ans<<'\n';
}
int32_t main(){
ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
int t;
cin>>t;
while(t--) solve();
return 0;
}