文章目录
📖 前言
哈希表在日常生活中我们一定略有耳闻,作为STL中我们所必须学习和了解的容器,首先哈希查找的时间复杂度为〇(1),是一种一一映射的存储方式,其次它在日常生活中的应用范围也是很广的,例如位图,海量数据筛选中用到的布隆过滤器等等……
下面我们就来先学习一下STL中的应用哈希表的两个容器,再了解一下底层结构 (两个关联式容器unordered_map和unordered_set,unordered系列的关联式容器之所以效率比较高,是因为其底层使用了哈希结构),最后再来模拟实现一下……
🙋 🙋 🙋 🙋 🙋
1. STL中哈希表的两个应用⚡
在STL中对应的容器分别是unordered_map和unordered_set这两个关联式容器。
只要我们会用set那么我们就会用unordered_set,但不是任何场景下,unordered_map/set都能将map/set替换掉。
哈希是一种映射,有的地方也叫散列:存储关键字跟存储位置建立关联关系
1.1 🌟unordered_set
我们简单的试用一下unordered_set,如下代码:
void test_set()
{
unordered_set<int> s;
//set<int> s;
s.insert(1);
s.insert(3);
s.insert(4);
s.insert(2);
s.insert(10);
//unordered_set<int>::iterator it = s.begin();
auto it = s.begin();
while (it != s.end())
{
cout << *it << " ";
++it;
}
cout << endl;
for (auto e : s)
{
cout << e << " ";
}
cout << endl;
}
结果是无序的
由上图和查阅资料得知:
- map和set: 去重 + 排序
- unordered_map和unordered_set: 只有去重
其余函数接口和之前所学的容器使用起来大致相同,不再一一赘述。
unordered_map和unordered_set都是单向迭代器:
值得注意的是unordered_map和unordered_set的迭代器都是单向迭代器,而我们之前学的map和set则是双向迭代器。
unordered_set和set的性能对比:
void test_op()
{
//对比插入的效率:
int n = 1000000;
vector<int> v;
v.reserve(n);
srand(time(0));
for (int i = 0; i < n; i++)
{
//v.push_back(i);
//v.push_back(rand()+i); //重复少
v.push_back(rand()); //重复多
}
size_t begin1 = clock();
set<int> s;
for (auto e : v)
{
s.insert(e);
}
size_t end1 = clock();
size_t begin2 = clock();
unordered_set<int> us;
for (auto e : v)
{
us.insert(e);
}
size_t end2 = clock();
cout << s.size() << endl;
cout << "set insert:" << end1 - begin1 << endl;
cout << "unordered_set insert:" << end2 - begin2 << endl;
//扩容重新哈希是有消耗的 -- 数据量多的时候,没有那么多重复的数据的时候也不一定
//对比查找的效率
size_t begin3 = clock();
for (auto e : v)
{
s.find(e);
}
size_t end3 = clock();
size_t begin4 = clock();
for (auto e : v)
{
us.find(e);
}
size_t end4 = clock();
cout << "set find:" << end3 - begin3 << endl;
cout << "unordered_set find:" << end4 - begin4 << endl;
//对比删除的效率
size_t begin5 = clock();
for (auto e : v)
{
s.erase(e);
}
size_t end5 = clock();
size_t begin6 = clock();
for (auto e : v)
{
us.erase(e);
}
size_t end6 = clock();
cout << "set erase:" << end5 - begin5 << endl;
cout << "unordered_set erase:" << end6 - begin6 << endl;
}
因为生成随机数的个数有个最大值,不能生成无限多个随机数,这就导致了有很多数字的重复。
当重复的数字很多时:
当没有重复的数字时:
总结:
总的来说unordered_map和unordered_set要比map和set的性能要好的,但是也并不是一定的,当数据量很大的时候,扩容重新哈希是有消耗的。
1.2 🌟unordered_map
void test_map()
{
unordered_map<string, string> dict;
dict.insert(make_pair("sort", "排序"));
dict.insert(make_pair("left", "左边"));
dict.insert(make_pair("left", "剩余"));
dict["string"];
dict["left"] = "剩余";
dict["string"] = "字符串";
unordered_map<string, string>::iterator it = dict.begin();
while (it != dict.end())
{
cout << (*it).first << " " << (*it).second << endl;
it++;
}
}
2. 常见查找的性能对比💥
-
暴力查找: 时间复杂度〇(N)
-
二分查找: 时间复杂度〇(logN) ,缺点 — 有序、数组结构
-
搜索二叉树: 时间复杂度〇(N),缺点 — 极端场景退化成单支
-
平衡二叉搜索树: 时间复杂度〇(logN)
-
- AVLTree: 左右子树高度差不超过1
-
- 红黑树:最长路径不超过最短路径的2倍
-
哈希
-
B树系列: 多叉平衡搜索树 — 数据库原理
-
跳表
备注:
红黑树高度略高一些,但是跟AVL树是同一数量级,对于现代计算机没有差别但是红黑树相对而言近似平衡,旋转少。
3. 哈希表模拟实现🏁
3.1 哈希的概念:
普通查找:
- 我们之前查找一个数据时,一般都是通过比较,查找一个元素时,必须要经过关键码的多次比较。顺序查找时间复杂度为〇(N),平衡树中为树的高度,即〇(logN)。
理想的搜索方法:
- 可以不经过任何比较,一次直接从表中得到要搜索的元素。
- 如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到该元素。
- 该中存储结构可以实现:
-
- 插入元素时:
根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放。
- 插入元素时:
-
- 查找元素时:
对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置
取元素比较,若关键码相等,则搜索成功。
- 查找元素时:
哈希表就由此而来…
3.2 哈希函数:
我们如何一一将键值转换为对应的关键码值,并映射到对应序号的存储位置呢?
直接映射法:
直接建立映射关系问题:
1、数据范围分布很广、不集中(可能存在空间浪费严重的问题)
2、key的数据不是整数,是字符串怎么办?是自定义类型对象怎么办?
此时我们就需要一个函数对特殊非整数类型的数据进行处理,使其返回一个特定的整数,这个函数我们叫做 —— 哈希函数。
常见的哈希函数:
- 直接定址法:(常用)
-
- 取关键字的某个线性函数为散列地址
-
- 使用场景:适合查找比较小且连续的情况
- 除留余数法:(常用)
-
- 直接用该值除以表的大小然后取余数
- 字符串哈希算法:(常用)
3.3 哈希冲突:
不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞。
按照上述哈希函数计算出键值对应的关键码值,但是算出来的这些码值当中,有很大的可能会出现关键码值相同的情况,这种情况就叫作:哈希冲突。
- 哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是无法避免哈希冲突。
- 解决哈希冲突两种常见的方法是:闭散列和开散列
3.4 闭散列 — 开放定址法:
闭散列: 也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的下一个空位置中去。
线性探测:(依次去找空位置)
从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。
插入:
- 通过哈希函数获取待插入元素在哈希表中的位置
- 线性探测找到空位置将值插入
查找
- 挨个遍历哈希表,直到找到空为止
删除:
- 通过关键码值再用线性探测找到该值直接删除
- 注意:
-
- 删除要是直接删除的话有可能会影响查找的准确性
-
- 如图删除了10,要去找60就会找不到
-
- 所以我们给每个键值提供一个状态,采取伪删除的方法
线性探测的缺点:
- 一旦发生哈希冲突,所有的冲突连在一起,容易产生数据“堆积”,即:不同关键码占据了可利用的空位置,使得寻找某关键码的位置需要许多次比较,导致搜索效率降低。
二次探测:(跳跃着找空位置)
对上面方法的优化:
- 不那么拥堵
闭散列哈希表并不能太满:
- 太满就会导致线性探测时,找不到位置
- 更不能放满,那样探测就会陷入死循环
- 所以要控制一下存储的数据
- 我们引入了一个变量
n
来记录存储数据的个数
散列表的载荷因子定义为: a = 填入表中的元素个数 / 散列表的长度
所以我们要控制一下负载因子:
代码如下:
template<class K>
struct DefaultHash
{
size_t operator()(const K& key)
{
return (size_t)key;
}
};
//字符串哈希算法
template<>
struct DefaultHash<string>
{
size_t operator()(const string& key)
{
//BKDR
size_t hash = 0;
for (auto ch : key)
{
hash = hash * 131 + ch;
}
return hash;
}
};
//闭散列(开放地址法)
namespace CloseHash
{
enum State
{
EMPTY,
EXITS,
DELETE
};
template<class K, class V>
struct HashData
{
pair<K, V> _kv;
State _state = EMPTY;
};
template<class K, class V, class HashFunc = DefaultHash<K>>
class HashTable
{
typedef HashData<K, V> Data;
public:
bool Insert(const pair<K, V>& kv)
{
//去重
if (Find(kv.first))
{
return false;
}
//负载因子到0.7及以上,就扩容
if (_tables.size() == 0 || _n * 10 / _tables.size() >= 7)
{
size_t newSize = _tables.size() == 0 ? 10 : _tables.size() * 2;
//扩容以后,需要重新映射
HashTable<K, V, HashFunc> newHT;
newHT._tables.resize(newSize);
//遍历旧表,插入newHT
for (auto& e : _tables)
{
if (e._state == EXITS)
{
newHT.Insert(e._kv);
}
}
newHT._tables.swap(_tables);
}
HashFunc hf;
size_t starti = hf(kv.first);//调用仿函数,获取整数
starti %= _tables.size();//求模取余 -- 但是不能除0
size_t hashi = starti;
size_t i = 1;
//线性探测/二次探测
while (_tables[hashi]._state == EXITS)
{
hashi = starti + i;
++i;
hashi %= _tables.size();
}
_tables[hashi]._kv = kv;
_tables[hashi]._state = EXITS;
_n++;//有效数据个数++
return true;
}
Data* Find(const K& key)
{
//空表直接返回空指针
if (_tables.size() == 0)
{
return nullptr;
}
HashFunc hf;
size_t starti = hf(key);
starti %= _tables.size();
size_t hashi = starti;
size_t i = 1;
while (_tables[hashi]._state != EMPTY)
{
if (_tables[hashi]._state != DELETE && _tables[hashi]._kv.first == key)
{
return &_tables[hashi];
}
hashi = starti + i;
i++;
hashi %= _tables.size();
}
return nullptr;
}
bool Erase(const K& key)
{
Data* ret = Find(key);
if (ret)
{
ret->_state = DELETE;
_n--;
return true;
}
else
{
return false;
}
}
private:
vector<Data> _tables;
size_t _n = 0; //存储关键字个数
};
}
扩容时我们不能直接将原来的数据拷贝过去:
- 因为哈希是映射的关系,关键码值是通过数据和表的大小计算出来的
- 如果直接拷贝的话全都乱套了
- 这时我们需要重新映射
- 如图所示,也不是特别麻烦
- 直接建立一个新表,然后遍历旧表一次映射到新表中
- 不过扩容时会有不少的消耗
补充:
- 映射的时候取模
- 应该是对表的size()取模,而不是capacity()
- 因为对capacity取模的话,可能取到超出size的位置
- operator[]会对超出size的检查(不过有的也不检查,根据不同版本的库里定)
3.5 开散列 — 哈希桶、拉链法,开链法:
开散列: 开散列法又叫链地址法(哈希桶),首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链接来,各链表的头结点存储在哈希表中。
从上图可以看出,开散列中每个桶中放的都是发生哈希冲突的元素。
很显然,哈希桶中每个元素是个地址,所以哈希桶的底层原理就是一个指针数组,每个结点再挂着一个单链表,这样冲突就很容易解决了。
namespace Bucket
{
template<class K, class V>
struct HashNode
{
pair<K, V> _kv;
HashNode<K, V>* _next;
HashNode(const pair<K, V>& kv)
:_kv(kv)
, _next(nullptr)
{}
};
template<class K, class V, class HashFunc = DefaultHash<K>>
class HashTable
{
typedef HashNode<K, V> Node;
public:
~HashTable()
{
for (size_t i = 0; i < _tables.size(); i++)
{
Node* cur = _tables[i];
while (cur)
{
Node* next = cur->_next;
delete cur;
cur = next;
}
_tables[i] = nullptr;
}
}
bool Insert(const pair<K, V>& kv)
{
if (Find(kv.first))
{
return false;
}
//新方法:(转移结点)
//*原来单链表中的结点得到了利用,就不用去开新的结点了
//负载因子 == 1 扩容
HashFunc hf;
if (_tables.size() == _n)
{
size_t newSize = _tables.size() == 0 ? 10 : _tables.size() * 2;
vector<Node*> newTable;
newTable.resize(newSize, nullptr);
for (size_t i = 0; i < _tables.size(); i++)
{
Node* cur = _tables[i];
while (cur)
{
Node* next = cur->_next;
size_t hashi = hf(cur->_kv.first) % newSize;
cur->_next = newTable[hashi];
newTable[hashi] = cur;
cur = next;
}
_tables[i] = nullptr;
}
newTable.swap(_tables);
}
size_t hashi = hf(kv.first);
hashi %= _tables.size();
//头插到对应的桶即可(单链表的尾插效率不高,但是头插效率高)
Node* newnode = new Node(kv);
newnode->_next = _tables[hashi];
_tables[hashi] = newnode;
_n++;
return true;
}
//定位到桶,然后在同中挨个找一遍
Node* Find(const K& key)
{
if (_tables.size() == 0)
{
return nullptr;
}
HashFunc hf;
size_t hashi = hf(key);
//size_t hashi = HashFunc()(key);
hashi %= _tables.size();
Node* cur = _tables[hashi];
while (cur)
{
if (cur->_kv.first == key)
{
return cur;
}
cur = cur->_next;
}
return nullptr;
}
bool Erase(const K& key)
{
if (_tables.size() == 0)
{
return false;
}
HashFunc hf;
size_t hashi = hf(key);
hashi %= _tables.size();
Node* prev = nullptr;
Node* cur = _tables[hashi];
while (cur)
{
if (cur->_kv.first == key)
{
if (prev == nullptr)
{
_tables[hashi] = cur->_next;
}
else
{
prev->_next = cur->_next;
}
delete cur;
return true;
}
prev = cur;
cur = cur->_next;
}
return false;
}
private:
//指针数组
vector<Node*> _tables;
size_t _n = 0;
};
}
扩容我们有两种方案:
方案一:
方案二:
很显然我们更倾向于方案二:
- 以为方案二中是将原来单链表中的结点得到了利用,就不用去开新的结点了
- 而方案一则是又开了一遍新的结点,效率不高
- 方案一是拷贝创建新的结点,方案二是转移结点
哈希表的析构:
虽然vector自己的析构函数可以释放哈希表,但是哈希桶中挂着的每个结点是不能释放的,需要我们手动释放掉。
4. 测试:⭕
测试1:
void TestHT1()
{
int a[] = { 20, 5, 8, 99999, 10, 30, 50 };
HashTable<int, int> ht;
for (auto e : a)
{
ht.Insert(make_pair(e, e));
}
//需要自己实现拷贝构造,完成链表桶深拷贝
//HashTable<int, int> copy(ht);
}
哈希桶如下:
测试二:
void TestHT3()
{
string arr[] = { "苹果", "西瓜", "苹果", "西瓜", "苹果", "苹果", "西瓜", "苹果", "香蕉", "苹果", "香蕉" };
//HashTable<string, int, StringHash> countHT;
HashTable<string, int> countHT;
for (auto& str : arr)
{
auto ret = countHT.Find(str);
if (ret)
{
ret->_kv.second++;
}
else
{
countHT.Insert(make_pair(str, 1));
}
}
}
哈希桶如下: