本篇将接着算法整理——【回溯法简述】-CSDN博客和算法整理——【回溯法进阶(1)】-CSDN博客,继续整理和分析更多回溯法解决的问题。
一、递增子序列
上一篇博客中的去重问题较为重要,涉及到了实现树层去重而不是树枝去重。我们找个运用了这个知识点但不相同的题目巩固一下,并学习一些新的处理方法。
例题为491. 非递减子序列 - 力扣(LeetCode),给你一个整数数组 nums
,找出并返回所有该数组中不同的递增子序列,递增子序列中 至少有两个元素 。你可以按 任意顺序 返回答案。数组中可能含有重复元素,如出现两个整数相等,也可以视作递增序列的一种特殊情况。
本题可以视作一个用回溯法解决的组合问题。上一篇博客中的去重问题,我们是将候选集合排序了,然后使用used数组标记是否选用了该选元素。而本题有递增的要求,所以不能对圆集合进行排序,不然会打乱原来的顺序。也就是说我们应该采用另外的方法来实现树层上的去重(即同一层不能取相等的数)。
方法一:使用unordered_set<int> uset;
记录本层该元素是否重复使用。如果能在Set中find到,说明本层这个数已被使用过,则跳过。没有使用过则将这个数insert进set里,表示本层使用了这个数并开始调用回溯函数继续后面的回溯。注意这里的set是针对树层的,每层不一样的。而单层遍历逻辑里的for循环即为树层上的遍历,所以我们在for循环之上进行set的初始化,即可实现每层对应一个set。
部分代码如下:
unordered_set<int> uset; // 使用set对本层元素进行去重
for (int i = startIndex; i < nums.size(); i++) {
if ((!path.empty() && nums[i] < path.back())
|| uset.find(nums[i]) != uset.end()) {
continue;
}
uset.insert(nums[i]); // 记录这个元素在本层用过了,本层后面不能再用了
path.push_back(nums[i]);
backtracking(nums, i + 1);
path.pop_back();
方法二:用数组做哈希。因为本题数组集合中的数的范围有限,为[-100,100],我们可以将其映射到[0,200]的数组上。这样可以提升时间上的效率。这种方法是对上一种的优化。
我们依旧通过回溯三部曲来解决这个题的代码。首先确认函数参数和返回值。我们依旧需要一维数组path存切割后的子串,需要二维数组result存放结果。本题递归函数参数还需要startIndex来记录下一次开始的位置。
然后是确定返回条件。因为本题是取子集,对子集长度上只有大于一的要求,也就是说遍历出的长度大于一的所有结果都要保存进result。
最后是确定单层逻辑。我们用方法二种的哈希法实现去重。在for循环展开树层前初始化vector<bool> used,遍历树层时,如果这个数被使用过或者小于path中最后一个数,则跳过。其他则设置这个数为使用过,将其加入path,并对后面的数展开回溯调用,调用完后从path中pop出来,不用改used,因为在本层这个数已经被使用过了还是保留之前使用过的记录。
具体的整体代码如下:
class Solution {
public:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int> nums, int start)
{
if(path.size()>1) result.push_back(path);
vector<bool> used(201,0);
for(int i = start; i<nums.size(); i++)
{
if((path.size()>0 &&nums[i]<path.back())||used[nums[i]+100]==1)
{
continue;
}
used[nums[i]+100] = 1;
path.push_back(nums[i]);
backtracking(nums,i+1);
path.pop_back();
}
}
vector<vector<int>> findSubsequences(vector<int>& nums) {
backtracking(nums,0);
return result;
}
};
二、全排列
以上讲的都是各种组合问题,回溯法还可以解决排列问题。排列问题和组合问题的区别在于排列问题在乎子集中数值的顺序,如[1,2]和[2,1]在排列中就是两种排列。
用一道简单的全排列题目来对回溯法解决排列问题开个头。
例题为46. 全排列 - 力扣(LeetCode),给定一个不含重复数字的数组 nums
,返回其 所有可能的全排列 。你可以按任意顺序返回答案。
此时我们就不需要组合问题时的回溯函数里的startindex参数了。因为你遍历到了后面的数后,还是要考虑前面的数被放在后面的顺序,不能只遍历后面的数。此时需要的是一个标记集合元素是否被使用过的数组。如果未被使用过那么可以考虑把它加在后面,被使用过了则不可取。
依旧按照回溯三部曲进行分析。首先是函数的参数和返回值。结合上面的分析,我们不需要startindex,需要vector<bool> used。
void backtracking (vector<int>& nums, vector<bool>& used)
第二步,确定返回条件。当path.size()==nums.size()时需要把结果存入result,然后return。
第三步,确定单层逻辑。遍历集合中所有元素,如果被使用过,则跳过。未被使用过则标记为已使用,然后放入path中,调用回溯函数,然后pop出path,改为未使用。
整体代码如下:
class Solution {
public:
vector<int> path;
vector<vector<int>> result;
void backtracking(vector<int>& nums, vector<bool>& used)
{
if(path.size() == nums.size())
{
result.push_back(path);
return;
}
for(int i = 0;i<nums.size();i++)
{
if(used[i]==1) continue;
used[i] = 1;
path.push_back(nums[i]);
backtracking(nums,used);
used[i] = 0;
path.pop_back();
}
}
vector<vector<int>> permute(vector<int>& nums) {
vector<bool> used(nums.size(),0);
backtracking(nums,used);
return result;
}
};
说明:本文为作者整理知识点用于复习巩固,参考了代码随想录的讲解,有问题可以联系作者欢迎讨论~