CPU,GPU看过来 conda中创建pytorch虚拟环境并且安装jupyter

Python,Conda&PyTorch环境设置与安装指南
本文指导如何在Python3.8环境下设置Conda,创建PyTorch虚拟环境,包括GPU版本选择,以及安装JupyterNotebook并配置到PyTorch环境中,解决常见错误。

一准备工作

1.先寻找python版本,conda版本,pytorch版本三者之间的对应性,我这里下载的是python3.8对应的conda和pytorch版本(若不知怎么对应,可问GPT)

2.查看自己的电脑的位数,要让conda的位数和自己电脑的相同

二开始安装(conda安装省略,这种安装自己找资料应该能搞定)

3.然后下载对应的conda版本,所有版本的下载地址Index of /

4.下载好conda后通过查阅资料将conda安装好(因为只说重点),然后点击

然后查看基础虚拟环境

初次下载只有红框的环境

然后创建pytorch的虚拟环境

conda create --name pytorch python=3.8

(pytorch为虚拟环境名字,3.8是python适配的版本号)

创建完成之后再进行

conda env list

发现出现了自己创建的环境

然后进入pytorch虚拟环境中

conda activate pytorch

然后选择对应的pytorch版本进行下载,所有版本的网址Previous PyTorch Versions | PyTorch

若是下载GPU版本的则需要先查看自己的显卡驱动版本号win+R        然后输入        nvidia-smi

然后查看下面表格,对照版本

(借的别人的图)

复制适合自己设备,系统的版本然后复制命令进行安装

然后在pytorch环境中输入python,进入python后输入import torch,若无报错安装完成

三        安装jupyter notebook

1.进入pytorch 这个虚拟环境中输入

conda list

观察是否有下面的包

若无即输入conda install ipykernel        下载该jupyter内核

若有即可执行以下步骤,为jyputer notebook配置虚拟环境

执行 python -m ipykernel install --name pytorch

在完成第4步的过程中,可能遇到下面的错误:

ImportError: cannot import name ‘secure_write‘ from ‘jupyter_core.paths‘

这时需要先使用pip3更新jupyter_core模块

pip3 install --upgrade jupyter_core jupyter_client

然后验证是否配置成功

pytorch        cpu版本天然为False

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值