古代有一个梵塔,塔内有三个座A,B,C。开始时A座上有64个盘子,大小不等,大的在下,小的在上。
有一个老和尚想把这64个盘子从A座移动到C座,但规定每次只允许移动一个盘,且在移动的过程中,在
三个座上都始终保持大盘在下,小盘在上移动过程中可以利用B座,要求编程输出移动盘子的步骤。
(解题分析:
首先,如果有小和尚一,帮老和尚把A座上的63给盘子(除最底下那个盘子外的63个)搬到B座上(借助C座),
则老和尚就可以自己把“A座”中最底下的那一块盘子搬到C座上,然后小和尚一再把“剩下的63个盘子搬到C座上”,
这样子就完成的任务。
但是还有个问题:小和尚一如何把“剩下的63个盘子搬到C座上”?
这问题是这样子解决的:要是有小和尚二,让小和尚二将B座上的62个盘子(除最底下的盘子外)搬到A座上(利用C座),
则小和尚一就可自己把“B座”中最底下的那一块盘子搬到C座上,然后小和尚二再把“剩下的62个盘子搬到C座上”,
这样子就完成了任务。
那小和尚二如何把“剩下的62个盘子搬到C座上”?此时62个盘子回到了A座上,重复以上步骤,即可解决问题。
)
总结:将一个复杂的过程[n个盘子,从哪(初始),通过哪(中介),到哪(目的)]
给简化为两个整体:
若n=1,则直接将盘子从A移动到C.
当n=2,则先将上面的一个,从A移动到B(无需借助其余梵塔),然后将底座从A移动到C,再将B中的盘子移动到C。(大过程)
若n>2;则将n视为两个部分,最下面的一个盘子(记为basis),上层盘子n-1个(记为upper)。将这两部分视为n=2的情况,
即想将upper移动到B塔座,再将basis移动到C塔座,再将upper移动到C塔座。这样就解决了问题。
但是在移动upper从某个(ABC)塔座去另一个塔座的过程中,是需要借助一个中间塔座才能做到的(upper--> from A -->pass C-->arrive B )
(如n=3的情况:在将upper移动到B座的过程,需要借助C座才能做到),显然底座的移动就不需要这情况,所以可以直接移动(如basis from A to C/move A to B)。
int main()
{
void hanoi(int n, char from, char pass, char three);
hanoi(4,'A', 'B', 'C'); //慎重调用“n=64”,函数的时间复杂度位(2^n)-1。
return 0;
}
void hanoi(int n, char one, char two, char three)//将n个盘从初始位置塔A,通过中介塔B,移动到目的塔C。(形参的含义可以自己定,但是函数体要相应做出改变)
{
if (n == 1)
printf("%c-->%c\n", one, three);
else //当>2的执行过程
//上面三步等价于if(n>0),分开写易于理解过程。
{
hanoi(n - 1, one, three, two); //先将upper移开,使塔座仅剩basis
printf("%c-->%c\n", one, three); //basis移动到要目的塔。注意,当n-1时,相当于无upper,仅进行此步,因此若用if(n>0)来替代前面几步,结果等价。
hanoi(n - 1, two, one, three); //最后将upper移动到目的塔
}
}