医药打工人Deepseek案例分享,大模型落地应用实例,普通人也能抓住Deepseek的红利

随着deepseek(简称DS)的爆火相信应该大家或多或少都听过甚至是自己正在使用。随着DS的开源,在干翻美国巨头的同时也让AI这高端的技术“飞入寻常百姓家”。国内医药大厂也迅速跟进要求落地DS了。

小欣在尝试过以后一发不可收拾,每天都在尝试用AI来进行日常工作的优化。借着给团队分享撺个小文。

先说结论:AI是工具,关键还是使用工具的人,引用《超能陆战队》电影里的经典台词就是“the only limitation is your imagination”想象即为你唯一的桎梏!。(中文是DS的翻译,还是不错的。)


网上关于DS的使用和分享千千万,但是小欣看下来对于咱们生物医药工作者似乎还是缺乏针对性,在这里抛砖引玉,跟大家分享一下小欣最近尝试的工作案例跟大家交流。

1,本地部署还是线上使用。

a)所谓本地部署就是利用DS的开源模型直接下载到本地或线下服务器,直接利用模型本身的推理和理解能力来帮助使用者进行思考和分析。

i.优势:

1.足够隐私,不用太担心机密文件信息泄密

2.能建立自身数据库,使得回答更加专业且有针对性。

3.可以连续性提问,回答可以考虑到前后文。

ii.劣势:

1.模态受本地算力的影响,即硬件性能不够那下载的开源模型“智商”受限。小欣的macbook pro M1Pro芯片撑死跑到32B的模型。(回答一下大家可能的疑问32B指的是模型参数的多少,数字越大越好,完全体是671B,根据小红书博主的测评,6台顶配macmini的群组可以基本跑满,10w左右硬件费用)。

2.不能联网,网上可以下的模型数据库只到2023年10月,所以回答的内容都是根据2年前的知识体系来回答的。需要不断自我完善才能“聪明起来”。但是其思考模式还是可以给到使用者启发的。

3.需要注意DS的“欺骗”。亲测上传PDF让DS汇总,它会读不全。

b)所谓线上使用就是利用云端资源及后台强大的芯片群组来提供算力和联网搜索帮助获得实时的信息。

i.优势:

1.联网功能得以保存,可以帮助进行搜索。加上DS的思考模式能帮助我们打开思路。

2.速度快,硬件算力不受限制,满配DS的使用,回答基本几秒就可以开始了。

ii.劣势:

1.上传文件这些还是要谨慎,内部或者客户文件不建议整篇上传分析,建议先脱敏再进行分析。(文献翻译,总结这种随意)

2.收费,目前免费的基本都因为人多,资源挤兑开始很慢或者压根不工作。付费后速度明显提升。

3.不能连续性提问,有些没有历史记录。

2,线上工具推荐

a)根据对本地部署和线上的对比分析可以看出咱们要是想获得完整DS体验,还是需要使用线上工具的。

b)目前线上工具首选还是DS官网,可但是这个亲测每天只能提1,2个问题,后面就是繁忙了,但是联网思考模式目前体感都是最佳。有历史记录可以连续性提问。

c)硅基流动,由于有拉新的奖励,因此现在火热程度非常高(小欣的推荐链接欢迎大家注册填写,邀请码zUAXvjRN,https://cloud.siliconflow.cn/i/zUAXvjRN)。但是不能线上传文档,需要结合API用第三方程序先分析文件才行。而且通过提问,似乎是非联网的,数据库还在23年(见下图)。

d)其它各个平台(超算互联网等),要不是模态不是满血,要不就是模型不够丰富,要不就是不能传附件,聊天逗个乐没问题,但是生产力还差点意思。

3,本地部署

a)本地部署方式大家如果想尝鲜,小某书一搜很全面,而且简单易懂,不过要根据个人的硬件环境来对应匹配。如果要发挥作用14B以上模型还是需要的。

b)基本思路ollama+chatbox来实现。Ollama来进行模型下载,chatbox实现可视化聊天。目前这个组合还是实现不了联网,DS这边要本地联网还是要采用API接口。

4,API接口的作用

a)API接口可以理解为一个网站的访问登陆名和授权口令。但是现在因为DS还不是多模态(对于图片还处理不了,因此设计图片时就会报错),还需要等后续官方更新才能真正形成生产力。

b)目前官方和硅基流动都有API接口,生成密钥以后,在chatbox里面对应旋转即可实现,但是要注意不能用含图片的形式,不然就会报错。(小欣还没折腾清楚,不知道是现在挤兑严重还是图片报错,使用很抓狂)

c)收费,目前API基本都是收费的,相对来说对比DS能带来的帮助,这个费用还是可以接受的。而且现在网址注册都送10块可以使用尝鲜的。

5,各AI工具的优劣势和组合

a)参考尝试了豆包,kimi,DS。

b)DS的优势在于思考,对于简单问题可能会让人觉得废话有点多,但是看它思考的流畅还是有不少提示。

c)豆包,kimi相对成熟一些执行具体工作更流畅,但是确实深度差点意思,可以胜任总结,搜索类的工作。可以用DS思考完成后拆分工作细节让豆包它们来快速执行。

6,使用案例

a)文献综述(基于本地部署32B的DS来进行分析,本地端要谨防信息不完整)

上传文献进行摘要总结,生成思维导图。

上传今年WRIB的几十页白皮书很快就能进行关键点的梳理,帮助找出总体框架。可以要求生成方便实现思维导图的格式(markdown),然后根据代码粘贴生成文本,用xmind软件导入即可快速得到思维导图。

b)思路整理(线上模型+技术路线图)

进行提问,然后让DS来进行回答并进行思路整理,生成mermaid的代码,然后采用线上网站粘贴生成最终技术路线图。

图形用户界面, 文本, 应用程序
AI 生成的内容可能不正确。

搜索个现在mermaid格式转换工具,https://mermaid.live/

图形用户界面
AI 生成的内容可能不正确。

C)定制自己的文档处理程序(本地部署+VBA)

进行提问,然后让DS来根据我们的需求生成对应解决方案,通过多次问答获得准确方向,生成VBA的代码,粘贴进excel中进行本地化调试。

以上3个案例是小欣根据自己的工作需求进行的初步探索,在这分享给大家希望能给大家打开思路。现在留言功能已经可以用了,欢迎大家一起交流使用经验。

撺文不易,大家能捧人场帮忙转起来,能捧钱场帮忙赞起来!

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

扫描下方csdn官方合作二维码获取哦!

在这里插入图片描述

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值