LLM时代智能网络爬虫:GitHub上31.8k星标!

如今是AI 的时代,数据是 AI 的主粮。食物都是有保质期的,数据也是一样。

优秀如你一定知道爬虫的本质是争夺数据。

今天喵给大家推荐一款ai时代的爬虫软件 crawl4ai[1],它不仅能轻松应对动态内容、反爬虫机制,还能通过大模型将数据转换成适合AI处理的Markdown格式。

Crawl4AI 核心优势

  • 专为LLM设计:生成的Markdown格式简洁明了,适合RAG和微调应用。

  • 速度更快:比传统爬虫快6倍,实时响应,成本低廉。

  • 更加灵活的Hook:比较完善会话管理支持、代理和自定义钩子,能够比较轻松应对各种数据抓取场景。

  • 干净的Markdown:生成结构化的Markdown,去除噪音,适合AI处理。

  • 智能过滤:基于BM25算法,提取核心信息,去除无关内容。

  • 自定义策略:用户可以根据需求自定义Markdown生成策略。

  • LLM驱动提取:支持所有LLM(开源和专有)进行结构化数据提取。

  • 远程浏览器控制:通过Chrome开发者工具协议连接远程浏览器,支持大规模数据抓取。

  • 会话管理:保留浏览器状态,支持多步骤抓取。

  • 代理支持:无缝连接代理,支持认证。

🚀 快速上手

1. 安装Crawl4AI

# 安装基础包   pip install -U crawl4ai      # 安装预发布版本   pip install crawl4ai --pre      # 运行安装后设置   crawl4ai-setup      # 验证安装   crawl4ai-doctor

如果看到如下输出,就证明安装成功了。

如果遇到浏览器相关问题,可以手动安装:

python -m playwright install --with-deps chromium

2. 运行一个简单的爬虫

通过提交一个url获取财联社电报资讯,会输出整理后的markdown文本。

import asyncio   from crawl4ai import *      asyncdefmain():       asyncwith AsyncWebCrawler() as crawler:           result = await crawler.arun(               url="https://www.cls.cn/telegraph",           )           print(result.markdown)      if __name__ == "__main__":       asyncio.run(main())

输出清理后的markdown

3、通过DeepSeek驱动进行数据处理

传统爬虫想要提取数据需要xpath匹配、css选择提取,或者写复杂绕脑的正则匹配。crawl4ai 的核心优势就是可以使用启发式Markdown生成。以下是通过获取财联社电报资讯、结构化json数据,并进行语义分析。

import asyncio   from crawl4ai import *   from pydantic import BaseModel, Field         classDeepSeekModel(BaseModel):       name: str = Field(..., description="资讯的标题")       content: str = Field(..., description="资讯内容")       result: str = Field(..., description="根据语义分类为:利好、中性、利空")   asyncdefmain():       asyncwith AsyncWebCrawler() as crawler:           result = await crawler.arun(               url="https://www.cls.cn/telegraph",               cache_mode=True,               word_count_threshold=1,               screenshot=True,               extraction_strategy=LLMExtractionStrategy(                   provider='deepseek/deepseek-chat',                   api_token="deepseek开放平台获取的apikey",                   base_url="https://api.deepseek.com",                   schema=DeepSeekModel.model_json_schema(),                   extraction_type="schema",                   instruction="从抓取的内容中提取所有的电报资讯,提取到资讯的标题和资讯内容,并且根据语义分类为:利好、中性、利空。一个提取的json格式应该是下面这样"                               "{'name':'资讯的标题','content':'资讯内容','result':'根据语义分类为:利好、中性、利空'}"                               ""               )           )           print(result.extracted_content)      if __name__ == "__main__":       asyncio.run(main())

Crawl4AI 不仅是一个工具,更是一种全新的数据抓取方式。如果你也想提升工作效率,可以试试Crawl4AI。

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值