就在GPT4.1系列刚发布没几天,OpenAI又带来了两款全新的推理模型:o3和o4-mini。这两款模型不仅能理解文字,还能主动思考、调用工具,甚至具备软件工程能力。
这意味着AI不再只是被动回答问题,而是可以主动帮我们完成复杂任务。
o3 与 o4-mini 是什么?
o3 和 o4-mini 是 OpenAI 最新推出的推理模型,接替了之前的 o1 和 o3-mini。与之前的大型语言模型(LLM)主要专注于模式识别和文本生成不同,这两款新模型引入了更深层次的内部“思维链”过程,使它们能够更好地处理复杂问题,评估不同的解决步骤,从而得出更准确和周到的答案。
特别是在 STEM、编程和逻辑推理等领域它们表现尤为出色。此外,它们是 O 系列中首个能够代理使用和组合 ChatGPT 中所有工具的模型。
o3 是 OpenAI 迄今为止最先进的推理模型,在特别擅长需要跨领域深度分析的任务。其计算能力是 o1 的10倍,并引入了“用图像思考”的能力,能够在认知过程中直接处理和推理视觉输入。
o4-mini 虽然体积更小,但在数学、编程和视觉任务等领域的表现依然出色。其优化设计确保了更快的响应速度和更高的吞吐量,非常适合对速度和效率要求较高的应用场景。
此外,OpenAI还发布了o4-mini-high版本,这个版本需要更长的计算时间,但能给出更可靠的结果。
o3 和 o4-mini 的主要特点
这两款先进的推理模型具有以下主要特点:
代理行为:他们表现出主动解决问题的能力,自主确定复杂任务的最佳方法并有效地执行多步骤解决方案。
高级工具集成:这些模型无缝利用网页浏览、代码执行和图像生成等工具来增强其响应能力并有效地处理复杂的查询。
多模态推理:他们可以将视觉信息直接处理并整合到推理链中,从而使他们能够解释和分析图像以及文本数据。
高级视觉推理:这些模型可以解读复杂的视觉输入,例如图表、白板草图,甚至是模糊/低质量的照片。它们甚至可以在推理过程中操纵这些图像(缩放、裁剪、旋转、增强),以提取相关信息。
o3 和 o4-mini是如何工作的?
这两种“o 系列”模型都是专门设计用来在生成响应之前进行更深入的思考并执行复杂的多步骤推理。
当遇到问题时,o3会先进行全面分析,然后逐步优化解决方案,最后反复检查确认,把复杂的问题用简单明了的方式呈现出来。更重要的是,这套思考流程完全是模型自己学会的,不是工程师预先设定的。
此外,o3 可以自主决定何时以及如何使用 ChatGPT 中的各种工具(网页搜索、Python 数据分析、DALL·E 图像生成和视觉)来解决复杂且多方面的查询。它可以链接多个工具调用,迭代搜索网页,分析结果,并跨模态合成信息。
o3 和 o4-mini 如何访问
这两款模型都可以通过 OpenAI 的 ChatGPT 平台和 API 服务访问:
ChatGPT 访问:订阅 ChatGPT Plus、Pro 和 Team 套餐的用户可以直接在聊天界面上使用 o3、o4-mini 和 o4-mini-high 模型。
企业版和教育版用户将在一周内获得访问权限。免费套餐用户可以在提交查询前选择“推理”选项来体验 o4-mini 模型。
API 访问:开发人员可以通过 OpenAI 的聊天完成 API 和响应 API 将 o3 和 o4-mini 集成到他们的应用程序中,从而实现跨各种平台的定制 AI 解决方案。
o3 和 o4-mini:基准性能
o3 和 o4-mini 模型均在一系列标准基准测试中展现出卓越的性能。
SWE-Lancer:这两款模型的表现远超之前的版本。
SWE-Bench Verified:o3 的得分为 69.1%,o4-mini 紧随其后,得分为 68.1%,明显优于之前的o3-mini(49.3%)和其他竞争对手。
Aider Polyglot:在代码编辑基准测试中,这两款模型都被证明是 OpenAI 的最佳模型。
AIME 2025:o4-mini 在配备 Python 解释器时得分高达 99.5%,而 o3 紧随其后,得分高达 98.4%。
Codeforces:o4-mini 的 Elo 评分高达 2719,体现了其在竞技编程场景中卓越的问题解决能力。与此同时,o3 的得分为 2706,其性能仍然远超其他模型。
GPQA 钻石级:o3 无需任何工具,即可在此基准上达到 87.7% 的准确率,展现出先进的科学推理能力。o4-mini 紧随其后,准确率为 81.4%。
MMMU:o3 在该基准测试中表现出色,展示了其处理涉及文本和视觉数据的多样化复杂任务的能力。
o3 和 o4-mini 的应用
o3 和 o4-mini 增强的推理、工具使用和视觉能力释放了广泛的潜在应用,包括:
数据分析:通过编写和执行 Python 代码来分析数据集,从网络获取补充信息,并生成摘要或可视化。
科学研究:通过解释复杂图表、分析实验数据、搜索文献以及可能提出新的研究途径来协助研究人员。
软件开发:调试复杂代码、根据可视化模型或图表生成代码、理解存储库结构以及执行多步骤软件开发任务。
教育培训:通过逐步推理、解释教科书图表或手写笔记来解释复杂的 STEM 概念,并提供交互式解决问题的帮助。
内容创作:生成图像的详细描述或分析,创建需要整合文本和视觉元素的内容,并根据视觉证据回答问题。
商业分析:使用实时网络数据分析市场趋势、制定预测并根据综合信息源制定战略计划。
创造性解决问题:解决需要结合不同类型的信息和推理步骤的开放式挑战。
最后
从“计算”到“图像思考”,从“被动回答”到“主动执行”,o3 和 o4‑mini 的出现,意味着 AI 迈出了实用化的关键一步。
它们不仅能读懂文字,更能自主调取工具、分析数据、理解画面,甚至给出既专业又易懂的建议。
相信在 AI 与人的协同下,未来,很多曾经难以触及的创意和难题,都能迎刃而解。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】