什么是AI大模型?什么是大模型?大模型入门到精通【非常详细】

一、定义

  1. AI大模型是人工智能领域中一种基于大规模数据训练且包含海量参数的复杂模型体系。它整合了海量的文本、图像、音频等多模态数据,通过深度神经网络架构进行学习与训练,从而具备处理多种复杂任务的能力,而非局限于单一特定任务。例如,它可以在一天内完成上万篇新闻报道的撰写,或者对医学影像进行精准分析以辅助诊断疾病,充分展现其强大的通用性与泛化性。

  2. 从本质上讲,AI大模型是对人类知识与经验的高度数字化抽象与模拟。它不仅仅是简单的数据处理工具,更是一种能够理解、生成和创造信息的智能体。以自然语言处理为例,大模型能够理解文本的语义、语法、语用等多层面含义,并根据给定的提示或问题生成连贯、合理且富有逻辑性的回答,就如同一个具备深厚语言功底与广泛知识储备的人类学者在进行交流与创作。

二、技术原理

  1. 基础架构 - Transformer 架构

- Transformer 架构是现代 AI 大模型的基石。它由编码器和解码器两大部分构成。编码器负责对输入数据进行特征提取与编码,将原始数据转换为模型能够理解与处理的中间表示形式。例如,在自然语言处理中,它可以将一段文本转换为一系列语义向量。解码器则依据编码器的输出以及特定的任务要求进行信息解码与生成。例如在机器翻译任务中,解码器根据源语言文本编码后的向量生成目标语言文本。这种架构完全依赖自注意力机制来实现数据在不同位置之间的信息交互与整合,从而有效捕捉序列数据中的长距离依赖关系,这是传统神经网络架构难以企及的。

  1. 核心机制 - 自注意力机制

- 自注意力机制是 Transformer 架构的核心创新点。它允许模型在处理序列数据时,针对每个位置的元素,动态地计算其与其他所有位置元素之间的关联程度或“注意力”权重。例如在一个句子中,每个单词都会与其他单词进行注意力计算,以确定在当前语境下哪些单词对其理解更为重要。通过这种方式,模型能够聚焦于文本中关键的语义信息,更好地理解复杂的句子结构和语义逻辑,无论是处理长句还是跨越多段的文本,都能够准确地把握核心内容,从而为后续的任务执行提供坚实的基础。

  1. 训练策略 - 预训练与微调

- 预训练阶段:模型首先利用海量的无标注数据进行大规模的预训练。在这个过程中,模型通过自监督学习任务,如语言模型中的文本预测任务(给定前文预测下一个单词)或者图像中的自监督特征学习任务(例如图像重建、对比学习等),自动地从数据中挖掘和学习通用的特征表示与知识模式。例如,在预训练语言模型时,模型会学习到单词之间的语义关系、语法规则以及常见的语言表达习惯等通用知识,这些知识可以跨越不同的具体应用领域。

- 微调阶段:在完成预训练后,模型针对具体的下游任务(如文本分类、情感分析、机器翻译等),使用相对少量的有标注数据进行微调。通过调整模型的部分参数,使其能够更好地适应特定任务的需求与特点。例如,在将预训练的语言模型微调为一个情感分析模型时,利用标注了情感倾向(积极、消极或中性)的文本数据,调整模型的参数,使其能够准确地判断新文本的情感类别,从而在特定任务上实现高精度的性能表现,同时保留预训练阶段所学到的通用知识与能力,大大提高了模型的泛化能力和适应性。

  1. 架构优化 - 多头注意力

- 多头注意力是对自注意力机制的进一步拓展与优化。它将模型的注意力计算过程划分为多个并行的“头”,每个头都可以独立地学习不同的特征表示或语义信息。例如,一个模型可能设置有 8 个头或 16 个头。在处理文本时,不同的头可能分别关注文本的语法结构、语义关系、情感色彩等不同方面的信息,然后将这些来自多个头的信息进行整合与融合。这种机制使得模型能够在多个语义层次和特征维度上同时进行学习与理解,如同多个专家从不同角度对数据进行分析与解读,极大地增强了模型的表达能力和学习效率,能够处理更加复杂和多样化的任务需求。

  1. 训练稳定性 - 残差连接与层归一化

- 残差连接:在深度神经网络中,随着网络层数的增加,容易出现梯度消失或梯度爆炸等问题,导致模型难以训练或性能下降。残差连接通过在网络层之间添加直接的跳跃连接,允许信息在不同层次之间直接传递,避免了信息在深层网络中的过度衰减或放大。例如,在一个多层的 Transformer 编码器中,某一层的输入可以直接与该层经过变换后的输出相加,使得原始信息能够在网络中得以保留和强化,有助于模型更好地学习深层次的特征表示,提高模型的训练效果和性能。
- 层归一化:层归一化是一种数据归一化技术,它在模型的每一层对输入数据进行归一化处理。其目的是使每一层的输入数据具有相似的分布特征,加速模型的训练收敛过程,减少训练过程中的抖动和不稳定现象。通过对数据进行归一化,例如将每一层输入数据的均值调整为 0,方差调整为 1,能够使得模型在训练过程中更快地找到最优的参数值,提高模型的训练效率和稳定性,同时也有助于提升模型在不同数据分布下的泛化能力。

  1. 训练优化 - 优化与正则化技术

- 优化算法:在模型训练过程中,优化算法起着至关重要的作用。常见的优化算法如随机梯度下降(SGD)及其变体,如 Adagrad、Adadelta、Adam 等。这些算法通过不断地调整模型的参数,以最小化损失函数为目标,逐步优化模型的性能。例如,Adam 优化算法结合了动量法和自适应学习率的思想,能够在训练过程中根据参数的历史梯度信息动态地调整学习率,使得模型在不同的训练阶段都能够以合适的步长进行参数更新,既能够快速收敛,又能够避免陷入局部最优解,从而提高模型的训练效率和最终性能。
- 正则化技术:为了防止模型在训练过程中出现过拟合现象,即模型过度拟合训练数据而导致在新数据上性能下降,需要采用正则化技术。常见的正则化技术包括 L1 正则化、L2 正则化和 Dropout 等。L1 正则化通过对模型参数施加 L1 范数约束,促使模型参数趋向于稀疏化,即一些不重要的参数被设置为 0,从而减少模型的复杂度。L2 正则化则对参数施加 L2 范数约束,使得模型参数的取值更加平滑,避免参数过大导致模型过拟合。Dropout 技术在训练过程中随机地将部分神经元的输出设置为 0,相当于在每次训练迭代中随机地丢弃一部分网络结构,迫使模型在不同的子网络结构上进行学习,增强模型的泛化能力和鲁棒性。

三、发展阶段

  1. 起步探索阶段(1950 年 - 1990 年)

- 这一时期是人工智能的早期探索阶段,虽然尚未出现现代意义上的 AI 大模型,但奠定了基础的理论与技术概念。例如,1956 年达特茅斯会议正式提出“人工智能”概念,激发了全球范围内对智能机器的研究热情。在这个阶段,计算机技术相对落后,数据资源匮乏,研究主要集中在基于规则的专家系统、简单的神经网络模型(如感知机)等方面。这些早期的探索为后续神经网络的发展提供了理论雏形,但由于计算能力和数据的限制,模型的规模和性能都较为有限,无法处理复杂的现实任务。

  1. 初步发展阶段(1990 年 - 2010 年)

- 随着计算机技术的逐步发展,特别是硬件计算能力的提升,神经网络迎来了新的发展机遇。1998 年,LeNet - 5 模型诞生,这是现代卷积神经网络(CNN)的雏形,它在手写数字识别任务上取得了较好的效果,展示了神经网络在图像识别领域的潜力。同时,在自然语言处理领域,基于统计方法的语言模型开始兴起,如 n - gram 模型等,这些模型虽然简单,但为后来的语言模型发展积累了经验。在这个阶段,数据资源仍然相对有限,模型的复杂度和参数数量虽然有所增加,但与现代大模型相比仍有较大差距,研究主要集中在特定领域的应用探索,如计算机视觉中的简单图像分类、自然语言处理中的文本分类等基础任务。

  1. 快速成长阶段(2010 年 - 2017 年)

- 这一时期计算机硬件技术取得了重大突破,图形处理器(GPU)的大规模应用为深度神经网络的训练提供了强大的计算支持。同时,互联网的飞速发展使得数据资源呈爆炸式增长,为训练大规模模型提供了可能。2012 年,AlexNet 模型在 ImageNet 图像识别大赛中夺冠,引发了深度学习的热潮。AlexNet 采用了更深的卷积神经网络架构,展示了深度神经网络在大规模图像识别任务上的巨大优势。在自然语言处理领域,2013 年 word2vec 模型的出现,为文本表示学习提供了一种有效的方法,使得模型能够更好地理解单词之间的语义关系。随后,循环神经网络(RNN)及其变体如长短期记忆网络(LSTM)在自然语言处理中的应用逐渐广泛,能够处理序列数据中的长距离依赖关系,如文本生成、机器翻译等任务取得了一定的进展。然而,在这个阶段,虽然模型的性能在不断提升,但模型架构仍然相对较为单一,缺乏统一的、高度灵活且强大的架构设计,各个领域的模型发展相对独立,尚未形成跨领域通用的大模型概念。

  1. 变革突破阶段(2017 年 - 2020 年)

- 2017 年,Transformer 架构的提出彻底改变了人工智能领域的发展格局。Transformer 架构凭借其独特的自注意力机制,在自然语言处理领域取得了巨大的成功。2018 年,OpenAI 发布 GPT - 1 模型,这是基于 Transformer 架构的生成式预训练语言模型,它首次展示了大规模预训练模型在自然语言处理任务上的强大泛化能力。同年,Google 发布 BERT 模型,采用了双向 Transformer 架构,在多个自然语言处理任务上刷新了性能记录。这些模型的出现标志着预训练大模型时代的正式到来,引发了全球范围内对 AI 大模型的研究热潮。在这个阶段,研究重点逐渐转向如何构建更大规模的模型、如何利用更多的数据进行预训练以及如何优化模型的架构和训练方法,以进一步提升模型的性能和泛化能力。同时,模型的应用领域也开始从自然语言处理逐渐扩展到其他领域,如计算机视觉、语音识别等,探索多模态数据的融合与处理。

  1. 全面爆发阶段(2020 年 - 至今)

- 2020 年,OpenAI 推出 GPT - 3 模型,其参数数量高达 1750 亿,模型的规模和性能都达到了一个新的高度。GPT - 3 在零样本学习和少样本学习任务上表现出了惊人的能力,能够在没有特定任务训练的情况下,仅凭借预训练知识完成多种复杂任务,如文章撰写、问答、代码生成等。随后,各大科技公司和研究机构纷纷跟进,推出了各自的大模型产品。例如,百度的文心一言、科大讯飞的讯飞星火、腾讯的混元、阿里云的通义千问等。这些大模型不仅在自然语言处理任务上不断创新和优化,还在多模态融合方面取得了重大突破,能够同时处理文本、图像、音频等多种类型的数据,实现跨模态的信息理解与生成。例如,通过输入一张图片,模型可以生成关于图片内容的文字描述,或者根据一段文字描述生成相应的图片。在这个阶段,AI 大模型已经广泛应用于各个领域,如智能客服、智能写作、智能教育、智能医疗、智能交通等,深刻地改变了人们的生产生活方式,成为推动数字经济和社会智能化发展的核心力量。

四、典型平台、公司与产品

  1. OpenAI

- GPT 系列:
- GPT - 3 是 OpenAI 的标志性产品之一,拥有 1750 亿参数。它通过在大规模互联网文本上的预训练,掌握了丰富的语言知识和语义理解能力。在自然语言处理任务中,如文本生成任务,它能够根据给定的提示或主题生成连贯、流畅且富有逻辑性的文本。例如,给定“描述一下未来的城市生活”的提示,GPT - 3 可以生成诸如“在未来的城市中,智能交通系统将实现无人驾驶车辆的高效运行,建筑物表面覆盖着太阳能板以提供清洁能源,人们可以通过虚拟现实技术远程办公和学习……”等详细而生动的文本内容。在零样本学习任务中,它能够在没有特定任务训练的情况下,对新的任务类型进行初步的处理与回答,虽然准确性可能不如经过微调的模型,但展示了其强大的泛化能力。
- GPT - 4 则在 GPT - 3 的基础上进一步提升了性能与功能。它不仅在语言理解和生成能力上更加精准和强大,还具备了多模态理解与多类型内容生成能力。例如,它可以理解输入的图像内容,并结合图像信息进行文本创作或回答相关问题。当输入一张包含海滩风景的图片时,它可以生成“这是一片美丽的海滩,金色的沙滩在阳光的照耀下闪闪发光,海浪一波接一波地涌来,远处的海平线与蓝天相接……”的描述性文本,并且还可以根据进一步的提问,如“在这片海滩上可以进行哪些活动?”生成诸如“可以进行冲浪、沙滩排球、日光浴等活动”等回答,极大地拓展了模型的应用场景与交互方式。
- ChatGPT 是基于 GPT 系列模型构建的对话式人工智能应用。它通过简洁易用的界面,让用户能够方便地与模型进行自然语言交互。用户可以向 ChatGPT 提出各种问题,如科学知识问答、生活建议咨询、创意写作启发等,ChatGPT 能够快速响应用户的问题,提供详细、准确且富有个性化的回答。例如,用户询问“如何制定一份健康的饮食计划?”ChatGPT 可以根据营养知识和健康饮食原则,为用户提供一份包括食物种类、摄入量、饮食时间安排等详细内容的饮食计划,其交互体验类似于与一位知识渊博的健康顾问进行对话,从而引发了全球范围内的广泛关注与应用热潮。

  1. 百度

- 文心一言:
- 文心一言已升级至 4.0 版本,通过百度智能云千帆大模型平台为众多企业和开发者提供服务。它在功能上涵盖了文学创作、商业文案创作、数理逻辑推算等多个方面。在文学创作方面,它可以创作各种体裁的文学作品,如诗歌、小说、散文等。例如,给定“写一首关于春天的古诗”的指令,文心一言能够生成“春风轻拂柳丝长,桃李争妍映暖阳。燕舞莺啼添韵致,山川焕彩韵悠扬。”这样符合古诗格律和意境要求的作品。在商业文案创作中,它可以根据产品特点和营销目标,撰写广告文案、产品介绍等。例如,对于一款智能手机,它可以生成“全新[手机品牌]智能手机,搭载超强芯片,运行如飞;高清摄像,捕捉每一刻精彩;时尚外观,彰显个性魅力,是您畅享智能生活的最佳伴侣。”在数理逻辑推算方面,它能够解决一些数学问题和逻辑推理谜题。如给定“鸡兔同笼,头共 35,脚共 94,问鸡兔各几何?”的数学问题,文心一言能够通过列方程求解等方法得出鸡有 23 只,兔有 12 只的正确答案,并且可以详细展示解题步骤和思路,为用户提供多领域的智能服务支持,广泛应用于内容创作、智能办公、智能客服等多个场景。

  1. 科大讯飞

- 讯飞星火:
- 讯飞星火全面对标 GPT - 4 Turbo,在文本生成方面表现出色。它能够根据给定的主题或提示生成高质量的文本内容,无论是新闻报道、故事创作还是学术论文的大纲撰写等都能应对自如。例如,在新闻报道生成中,给定“报道一场科技新品发布会”的主题,讯飞星火可以快速生成“近日,一场备受瞩目的科技新品发布会在[城市名称]盛大举行。众多科技爱好者和媒体齐聚一堂,共同见证了一系列令人惊叹的科技新品亮相。[公司名称]在发布会上推出了其最新研发的[产品名称],该产品具有[产品特点]等创新功能,有望在市场上掀起一股新的科技热潮……”等内容完整、结构清晰的新闻报道。在语言理解方面,它能够准确理解文本的含义、情感倾向以及语义关系。例如,对于“这部电影虽然特效很棒,但剧情太拖沓”这样的文本,讯飞星火能够分析出其对电影特效的肯定和对剧情的负面评价,并且可以根据这种理解进行进一步的文本处理,如生成关于如何改进电影剧情的建议或者对类似电影的推荐等,同时还具备多模理解、视觉问答、多模生成等功能,并且免费开放 Lite 版本,为开发者提供大模型生命周期定制工具,方便企业和开发者根据自身需求进行定制化开发与应用。

  1. 腾讯

- 腾讯混元:

- 腾讯混元采用混合专家模型架构,参数规模达万亿,具备强大的处理复杂场景和多任务场景的能力。在多轮对话任务中,它能够与用户进行连续、自然且有深度的对话交流。例如,在一个关于旅游咨询的多轮对话中,用户先询问“推荐一些适合夏季旅游的国内海滨城市”,腾讯混元可以给出诸如青岛、厦门、三亚等城市的推荐,并介绍其各自的特色景点与美食。接着用户追问“青岛有哪些小众景点”,它能迅速回应像石老人浴场附近的小众观景点、信号山公园周边一些鲜为人知的历史建筑等信息,展示出其对对话语境的良好理解和信息储备的丰富性。在内容创作上,无论是撰写富有创意的故事、严谨的商业计划书还是专业的学术论文大纲,都能根据用户需求生成逻辑清晰、内容详实的文本。比如创作一个科幻故事,它能设定出独特的世界观、人物形象和情节走向,“在遥远的 3050 年,地球已成为星际联盟的边缘星球,年轻的探险家艾利克斯在一次偶然的机会中发现了一个废弃的外星基地,基地中隐藏着关乎整个银河系命运的秘密……”。在逻辑推理方面,面对复杂的逻辑谜题或数学问题,如复杂的逻辑推理游戏情境设定或高等数学中的微积分计算,它都能有条不紊地进行分析与解答,为用户提供准确且详细的推理过程和答案。此外,其文生图大模型已开源,并且开发的加速库能够大幅提升推理效率,无论是在自身的智能应用开发还是在助力整个行业的技术创新与应用拓展方面,都有着极为重要的推动作用。

  1. 阿里云

- 通义千问系列:

- 在闭源和开源领域均取得显著成绩,尤其在中文场景下性能超越 GPT - 4 Turbo。在多轮对话中,它能够精准把握用户意图,给出连贯且深入的回应。例如在智能客服场景下,用户就一款电子产品的使用问题进行多轮询问,从产品的基本功能操作到遇到故障时的排查步骤,通义千问都能以清晰易懂的语言详细解答,有效提升用户体验和问题解决效率。在内容创作领域,无论是撰写新闻稿件、博客文章还是小说故事,都能展现出较高的水准。如撰写一篇关于人工智能行业最新动态的新闻稿,它能迅速整合行业热点信息,以专业且生动的语言报道“近日,人工智能领域又有重大突破,[具体公司]研发的新型算法在图像识别精度上提升了[X]%,这一成果有望在安防监控、自动驾驶等多个领域带来变革性影响……”。在逻辑推理方面,对于复杂的逻辑论证和数学问题求解也表现出色。比如对于一道涉及几何证明和代数运算的综合数学题,它能严谨地推导证明过程并得出正确答案,同时还提供不同尺寸模型以适应不同部署需求,无论是大型企业的大规模数据处理中心还是小型创业公司的有限资源服务器,都能找到合适的通义千问模型版本进行部署应用,极大地拓展了其市场覆盖范围和应用场景多样性。

一、大模型风口已至:月薪30K+的AI岗正在批量诞生

在这里插入图片描述

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K(数据来源:BOSS直聘报告)

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

在这里插入图片描述

二、如何学习大模型 AI ?

🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值