🎯 核心亮点
-
• 股票分析智能体:深度融合基本面与技术面指标,全方位解析股票价值
-
• 报告撰写智能体:将复杂数据转化为清晰易懂的专业级投资报告
-
• 实时市场数据流接入 | 动态可视化分析 | 一键生成Markdown格式报告
▌项目核心架构
项目采用了一个由两个专业AI智能体组成的系统:
-
1. 股票分析智能体:负责收集和分析股票数据
-
2. 报告撰写智能体:将分析转化为专业报告
两个智能体通过 CrewAI 框架进行协作,按顺序执行任务,形成一个完整的工作流程。
▌技术组成
项目主要由以下几个部分组成:
-
1. 核心文件
-
•
financial_analyst.py
:主程序,包含Streamlit界面和智能体配置 -
•
financial_tools.py
:包含用于获取股票数据的工具
-
2. 主要技术栈
-
• @streamlit:用于构建Web界面
-
• @crewAIInc:用于配置和管理多智能体工作流
-
• @SambaNovaAI LLM :使用Llama-4-Maverick-17B大型语言模型
-
• YFinance:用于获取实时股票数据
-
3. 数据流程
数据流向为:yfinance API → 股票分析智能体 → 报告撰写智能体 → Streamlit界面
▌工作原理详解
-
1. 用户输入:通过Streamlit界面输入股票代码(如AAPL)
-
2. 数据获取:
YFinanceStockTool
从yfinance API获取实时股票数据 -
3. 数据分析:股票分析智能体使用获取的数据进行全面分析
-
4. 报告生成:报告撰写智能体将分析结果转化为结构化的markdown报告
-
5. 展示和下载:用户可以在界面上查看报告并下载
▌⚡ 快速启动指南
1️⃣ 克隆仓库
git clone https://github.com/Sumanth077/awesome-ai-apps-and-agents.git
cd awesome-ai-apps-and-agents/multi_agent_financial_analyst
2️⃣ 安装依赖
pip install -r requirements.txt
3️⃣ 配置环境密钥
在根目录创建.env
文件并填入:
SAMBANOVA_API_KEY=你的API密钥
▌🌐 交互体验
-
• 运行命令
streamlit run financial_analyst.py
-
• 输入股票代码(如AAPL)
-
• 点击「智能分析」触发多智能体协作
-
• 30秒内获得含买卖建议的完整报告
▌🤖 技术内幕
双智能体协同作战
🔍 分析引擎
• 财务健康度扫描
• 新闻情绪雷达监测
• MACD/RSI多指标融合诊断
✍️ 报告大师
• 自动生成华尔街级分析框架
• 关键数据高亮标记
• 风险提示智能标注
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】