数据分析基础——数据清洗

一、啥是数据清洗?

想象你在菜市场买了一筐西红柿,里面夹着:

  • 烂叶子(缺失值)

  • 烂番茄(异常值)

  • 贴了两层标签(重复数据)

  • 有的写“番茄”,有的写“西红柿”(单位/格式不统一)

数据清洗 = 把坏的挑出去,把好的洗干净,再切成一样大小的块,方便下锅。


二、啥是脏数据?给你 4 个常见种类

场景脏数据截图(文字版)后果
1. 缺失值年龄:空、999、-1平均年龄算出来 188 岁,不合常理
2. 重复值张三买了 3 次会员,订单号一模一样营收虚高 2 倍,容易导致误判
3. 单位乱有的“元”,有的“万元”可视化视图分析错误,坐标轴长度显示错误
4. 异常值身高 3.5 米、体重 0.5 千克机器学习模型直接“怀疑人生”

三、数据清洗的“三步曲”——像洗菜一样简单

① 挑拣(Remove)

  • 烂番茄:删除整行

  • 烂叶子:缺失太多直接整列扔掉

  • 工具:Excel 筛选、Python dropna()、Power Query“删除空值”

② 修剪(Replace)

  • 标签统一:西红柿 = 番茄

  • 单位统一:全部换算成“元”

  • 异常值:身高 3.5 米 → 空值,等人工核实

  • 工具:Excel SUBSTITUTE()、Python replace()、PQ“替换值”

③ 装盘(Reformat)

  • 日期格式:2025/1/1、2025-01-01、01-Jan-2025 → 统一 2025-01-01

  • 字符串/数字:把“1.2万”变成 12000

  • 工具:PQ“更改类型”一键搞定,Python pd.to_datetime()


四、上手上手!3 个“秒学会”的清洗小技能

技能 1:Excel 1 分钟去重

选中数据 → 数据 → 删除重复值 → 搞定!

技能 2:Power Query 一键补空

转换数据 → 右键列 → 填充 → 向下填充(空值自动补上面的值)

技能 3:Python 3 行代码(咱们之前人工智能备考里面也有这些代码)

import pandas as pd
df = pd.read_csv('dirty.csv')
df_clean = df.dropna().drop_duplicates()
df_clean.to_csv('clean.csv', index=False)

运行完,脏数据变净数据,文件直接生成。


五、清洗完了有啥用?

环节没清洗清洗后
报表柱状图负数柱子往下长坐标轴正常,清晰直观
机器学习模型准确率 45%准确率 92%,提高准确性
风控把“3.5 米”当真,拒贷正常客户异常值剔除,坏账率降 30%
运营重复会员发 3 次券,血亏精准触达,ROI 翻 2 倍

六、一张图记住全流程


七、常见疑问,一句话答

Q:清洗到什么程度算完?
A:能让“计算机”和“人类”都看懂就行,别追求 100% 完美,80% 干净就够下锅。

Q:谁来洗?必须会代码吗?
A:Excel/Power Query 足够应付 90% 场景;数据量>10 万行或要自动化,再学 Python。

Q:洗错了怎么办?
A:清洗前一定备份原始文件,命名 xxx_raw.csv,留条后路。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

笨鸟笃行

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值